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Abstract

There is a geometric construction, due to Katz, that can be used to define dif-
ferential operators on modular forms of various types. Harris has applied this
construction to define an operator ϑ on spaces of C∞ Siegel modular forms. In
this thesis, we give a detailed exposition of Harris’ work in [13]. We endeavour
to present the theory within its proper algebraic-geometric context, while at the
same time making full use of explicit analytic constructions. In addition, by iter-
ating twists of ϑ, we define an operator Θ on scalar-valued forms. We verify that
this Θ is Maass’ operator when the dimension g = 2.
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Chapter 1

Introduction

1.1 Maass’ operator in dimension one
To orient ourselves, we will begin with an example. The ideas we touch on here
will be developed much more fully in the subsequent chapters.

Let H = { z ∈ C | Im(z) > 0 } denote the upper half of the complex plane. The
modular group SL2(Z) = { γ = ( a bc d ) ∈Mat2×2(Z) | det γ = 1 } acts on H by linear
fractional transformations:

γ · z = az+ b

cz+ d
.

Suppose we have a function f : H→ C that, for some k ∈ Z, transforms under this
action according to the rule

f(γ · z) = (cz+ d)kf(z) (1.1)
for all z ∈ H and γ = ( a bc d ) ∈ SL2(Z). If f is holomorphic, we will say that it is a
holomorphic modular form; if f is merely smooth, we will call it a C∞ modular form. 1

The integer k is called the weight of f. The C∞ modular forms of weight k form a
complex vector spaceM∞

k , which contains the holomorphic modular formsMk

as a finite-dimensional subspace.
We are going to define a differential operator onM∞ := ⊕k∈ZM∞

k . Suppose
we differentiate (1.1) with respect to z:

f ′(γ · z) = (cz+ d)k+2f ′(z) + kc(cz+ d)k+1f(z). (1.2)
Note that f ′ is almost a modular form of weight k + 2, but not quite – there is an
unwanted extra factor of kc(cz+ d)k+1f(z). However, observe that

1

Im(γ · z)
=

|cz+ d|2

y
=

(cz+ d)2

y
− 2ci(cz+ d),

where y = Im z. Substituting the resulting expression for c(cz + d) into (1.2), we
get

f ′(γ · z) = (cz+ d)k+2f ′(z) +
k

2i

(
(cz+ d)2

y
−

1

Im(γ · z)

)
(cz+ d)kf(z)

= (cz+ d)k+2
(
f ′(z) +

k

2iy
f(z)

)
−

k

2i Im(γ · z)
f(γ · z).

1Strictly speaking, we should also impose a condition of boundedness at infinity.
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This shows f ′(z) + k
2iy
f(z) satisfies (1.1), with weight k+ 2.

Definition 1.1.1. The differential operator

δ :M∞
k →M∞

k+2, δ(f)(z) := f ′(z) +
k

2iy
f(z)

is known as the Maass operator.

Remark. Note that δ(f) will not be holomorphic in general, since y = Im z is not
holomorphic in z.

The operator δ has a geometric interpretation. To explain this interpretation,
we must first understand the connection between the function-theoretic defini-
tion of modular forms that we have given, and certain aspects of the geometry of
complex elliptic curves.

We begin with the upper half-plane H. For every τ ∈ H, there is an elliptic
curve Eτ = C/Λτ, where Λτ is the lattice Zτ ⊕ Z. As we vary τ, the Eτ vary holo-
morphically, forming a family of elliptic curves over H which we will denote by
Euniv. (The family is ‘universal’ because every complex elliptic curve is isomorphic
to Eτ for some τ.) If τ, τ ′ ∈ H, then the fibres Eτ and Eτ ′ are isomorphic if and only
if τ and τ ′ are related by the action of SL2(Z). Hence, the set of orbits SL2(Z)\H
is in bijection with the set of isomorphism classes of elliptic curves. Moreover, if
γ = ( a bc d ) ∈ SL2(Z) is such that τ ′ = γτ, then the corresponding isomorphism on
the fibres is given by

ϕγ : Eτ
∼−→ Eτ ′ , z 7→ (cτ+ d)−1z.

Unfortunately, there does not exist a universal family over SL2(Z)\H. If we
want to construct universal families other than Euniv/H, we are forced to replace
the full modular group SL2(Z) with a finite index subgroup whose action on H is
free. We will choose to focus on certain subgroups Γ(N), forN ≥ 3, called principal
congruence subgroups. The quotient Y(N) := Γ(N)\H is known as a modular curve.
It is a moduli space for elliptic curves equipped with a certain kind of N-torsion
data, and there exists a universal family Euniv,N over Y(N). This family is a quotient
of Euniv by Γ(N): the fibre of Euniv,N over a point Γ(N)τ ∈ Y(N) is the elliptic curve
obtained from the equivalence class { Eγτ | γ ∈ Γ(N) } via the identifications ϕγ
above.

The modularity condition (1.1) can be explained in terms of the geometry of
the universal family Euniv,N/Y(N). Recall that the first de Rham cohomology of a
complex torus X = C/Λ has a Hodge decomposition

H1dR(X) = H
1,0(X)⊕H0,1(X) = Cdu⊕ Cdū,

where u is the standard coordinate function on C. Assigning to each τ ∈ H the
vector spaceH1dR(Eτ) defines a vector bundle over H, which turns out to be trivial:

H1dR(Euniv/H) = H× Cdu⊕ Cdū. (1.3)

We will write ω and ω for the subbundles H× Cdu and H× Cdū. Similarly, we
have a vector bundleH1dR(Euniv,N/Y(N)) over Y(N), which is a quotient ofH1dR(Euniv/H)
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by the action γ 7→ (ϕ−1
γ )∗ of Γ(N). If we choose to represent the fibre above

Γ(N)τ ∈ Y(N) by Eτ, and the holomorphic part of its de Rham cohomology by
du ∈ H1dR(Eτ), then this action identifies duwith the pullback

(ϕ−1
γ )∗(du) = (cτ+ d)du ∈ H1dR(Eγτ). (1.4)

Note that the decomposition (1.3) is preserved, so we can write the quotient
H1dR(Euniv,N/Y(N)) as a sum of holomorphic and anti-holomorphic pieces:

H1dR(Euniv,N/Y(N)) = ωN ⊕ωN.

Modular forms are global sections of the kth tensor power ω⊗kN . A global sec-
tion ofω⊗kN lifts to a global section ofω⊗k, which is the same thing as a holomor-
phic function f : H → C. Because of (1.4), f necessarily satisfies (1.1) for all z ∈ H
and γ = ( a bc d ) ∈ Γ(N). Conversely, if f is a modular form of weight k, then f
descends to a global section of ω⊗kN for all N ≥ 3. Clearly, this correspondence
preserves holomorphicity/smoothness.

We can finally give the promised geometric interpretation of Maass’ operator.
For any holomorphic family X/S, there is a canonical way to differentiate the sec-
tions ofH1dR(X/S), known as the Gauss-Manin connection. If we identifyH1dR(X/S)
with its sheaf of holomorphic sections, then the Gauss-Manin connection is a C-
linear map of sheaves

∇ : H1dR(X/S)→ Ω1
S ⊗OS H1dR(X/S),

that satisfies a version of the Leibniz rule. We also have a C∞ version of this con-
nection:

∇∞ : H1∞(X/S)→ A1,0S ⊗C∞S H1∞(X/S),

whereH1∞(X/S) := C∞S ⊗OSH1dR(X/S), andA1,0S = C∞S ⊗OSΩ1
S is the sheaf of smooth

differential forms on S of type (1, 0).
The Gauss-Manin connection is characterised by its kernel, the local system of

horizontal sections. In the case of our family Euniv/H, the global horizontal sections
for∇∞ are given by the C-span of

α := dx̃−
Re z
Im z

dỹ, β :=
1

Im z
dỹ

where u = x̃+ iỹ, and z ∈ H. We have the identities
du = α+ zβ, dū = α+ z̄β, (1.5)

and a formula for ∇∞ is given by ∇∞(du) = dz⊗ β.
Writing ωN,∞ := C∞Y(N) ⊗OY(N)

ωN and H1∞ := H1∞(Euniv,N/Y(N)), we define a
map ϑ by the diagram

ω⊗kN,∞ (
H1∞)⊗k

A1,0Y(N) ⊗
(
H1∞)⊗k

ω
⊗(k+2)
N,∞ ω⊗2N,∞ ⊗ (H1∞)⊗k.
ϑ

(∇∞)⊗k

KS−1⊗ id
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Here the horizontal arrows are induced by the canonical inclusion and projection,
∇⊗k∞ is induced from∇∞ via the product rule, and KS is the Kodaira-Spencer iso-
morphism du⊗2 7→ dz. To compute ϑ on a section of ω⊗kN , we lift it to a section
of ω⊗k, apply the Gauss-Manin connection and KS−1 for Euniv/H, and project the
result onto ω⊗(k+2). Note that the projection of β onto ω is 1

2iy
du (from (1.5)), so

that ϑ(du) = du⊗2 ⊗ 1
2iy
du. Hence, if f : H→ C is a smooth function, we have

ϑ(f du⊗k) = f ′(z)du⊗(k+2) + kf ϑ(du)⊗ du⊗(k−1)

=

(
f ′(z) +

k

2iy
f

)
du⊗(k+2),

which shows ϑ = δ.

1.2 Theta operators for Siegel modular forms
We consider a g-dimensional generalisation of the picture sketched above. In
the new picture, the symplectic group Sp

2g
(Z) replaces the special linear group

SL2(Z), the Siegel upper half spaceSg replaces the upper half planeH, and abelian
varieties replace elliptic curves. Modular forms in this setting are known as Siegel
modular forms. As with elliptic modular forms, they have both an analytic and a
geometric definition. The weight of a Siegel modular form f is a holomorphic rep-
resentation κ : GLg(C)→ GL(Vκ). If κ = det⊗k for some k ∈ Z, then we say that f
is scalar-valued and of weight k; otherwise, we call f vector-valued.

In [21], Maass defined a differential operator

δg :M∞
g,k →M∞

g,k+2

on the spaceM∞
g,k ofC∞ Siegel modular forms of degree g and weight k (our nota-

tion here is not Maass’, but is adapted from [13]). Maass defined this operator via
an explicit (but complicated) formula. In [13], Harris reinterpreted this operator
in the language of algebraic geometry. In fact, he defined a map

ϑ : { C∞ forms of weight std }→ { C∞ forms of weight Sym2(std)⊗ std
}
, (1.6)

where std is the standard representation of GLg(C) on Cg. He then showed that
both δg and ϑ arise from certain canonical differential operators on the universal
enveloping algebra of the complexification of Sp

2g
(R), and thereby established a

connection between them.
The geometric point of view adopted in [13] (and featured in the previous sec-

tion) is due to Katz. Katz’s techniques are applicable to many different kinds of
modular forms. For example, in [17], Katz defined a theta operator on modpmod-
ular forms. This operator has recently been generalised by Ghitza and Flander to
mod p Siegel modular forms of arbitrary degree [9]. Working independently, Ya-
mauchi has considered essentially the same generalisation for forms of degree 2
[29]. Suppose κ is a representation of GLg(C) arising from a Schur functor. The
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mod p operator is of the form

ϑFG : { mod p forms of weight κ }→{
mod p forms of weight Sym2(std)⊗ det⊗(p−1)(std)⊗ κ

}
. (1.7)

Compare the weights of the forms in the targets of (1.6) and (1.7). The factor of
Sym2(std) appears in both (and for the same reason), whereas the appearance of
the extra factor of det⊗(p−1)(std) in (1.7) is a phenomenon peculiar to characteristic
p (due to multiplication by the Hasse invariant).

It does not seem to be especially desirable to produce modular forms whose
weight contains Sym2(std) as an irreducible factor. In particular, it would be nice
to be able to produce scalar-valued forms from scalar-valued forms. However,
because of the intricacies of representation theory in characteristic p, an analysis
of ϑFG in the style of [13] would not seem to be feasible. In this direction, Ya-
mauchi noticed that if he applied his operator twice, the weight of the resulting
form had a factor of (Sym2 std)⊗2, which is reducible if g = 2. By projecting onto
the irreducible factors of (Sym2 std)⊗2, he obtained modular forms of various new
weights.

‘Theta operators’ have many applications in number theory. For example, Har-
ris was motivated by proving rationality results for special values of L-functions
attached to Siegel modular forms. The characteristic p versions of these opera-
tors are closely related to mod p Galois representations; the connection has been
studied by Ghitza and McAndrew in [12].

1.3 What this thesis is about
We have two goals in this thesis. Our first goal is to give a detailed account of the
background necessary to understand Sections 4.0–4.4 of Harris’ paper [13]. Our
second goal is define to an operatorΘ :M∞

g,k →M∞
g,k+2, using Yamauchi’s method

of iteration-then-projection. We will then verify, in the case g = 2, that Θ is the
Maass operator δ2.

Although we have taken a more elementary route to its definition, the operator
Θ is already implicit in Harris’ work. It must be acknowledged that in some ways,
Harris’ point of view is more conceptual and powerful than ours. For example,
one can deduce from the results of [13] that Θ = δg for general g. However, the
low-tech approach we adopt to the representation theory in Section 5.1 is well-
suited to the characteristic p setting, and it should be possible to define a mod
p analogue of the Maass operator Θ using our methods. It would be interesting
to compare such an operator to the one defined by Böcherer and Nagaoka in [3],
using completely different techniques.

1.4 How this thesis is organised
Our main object of study will be a universal family of abelian varieties Auniv over
the Siegel upper half space Sg. This is analogous to the family of elliptic curves
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Euniv/H introduced in Section 1.1. We will be especially interested in its quo-
tients Auniv,N/Sg,N by certain finite index subgroups Γg(N) of the modular group
Sp

2g
(Z).

In Chapter 2, we defineAuniv/Sg as a family of complex tori, and discuss its co-
homology from a topological point of view. This will be important later when we
define and calculate the Gauss-Manin connection. In Chapter 3, we define the de
Rham cohomology sheaf H1dR(Auniv/Sg), and show that it satisfies a relative ver-
sion of the Hodge decomposition. In Chapter 4, we consider Auniv/Sg as a family
of abelian varieties. We define the families Auniv,N/Sg,N, and give the geometric
definition of Siegel modular forms. In Chapter 5, we define the C∞ theta operator
Θ, and calculate it in the case g = 2.

There is an index of notation following Chapter 5.
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Chapter 2

Cohomology of a family of complex
tori

A complex abelian variety is, in particular, a complex torus. In this chapter, we
define π : Auniv → Sg as a family of complex tori, and discuss its singular co-
homology. The fibre of this family lying above a point τ ∈ Sg is the complex
torus Aτ = Cg/Λτ, where Λτ is the lattice spanned by the standard basis vectors
e1, . . . , eg of Cg and the columns τ1, . . . , τg of the matrix τ. We will see that 1st
homology group H1(Aτ;Z) of Aτ can be identified with Λτ itself. It follows that

H1(Aτ;C) = C e∗1 ⊕ . . .⊕ C e∗g ⊕ C τ∗1 ⊕ . . .⊕ C τ∗g, (2.1)
since H1(Aτ;C) = Hom(Λτ ⊗Z C;C).

The main technical work in this chapter is to show how the vector spaces
H1(Aτ;C) fit together to form a locally free OSg-module H1(Auniv/Sg). In fact,
H1(Auniv/Sg) is free: we will show that it has a basis of global sections α1, . . . , αg,
β1, . . . , βg that restricts to (2.1) on the fibres. These are the ‘horizontal sections’
that define the Gauss-Manin connection.

In Section 2.1, we show that the singular cohomology groupH1(X;Z) of a com-
plex torus X = V/Λ may be identified with Λ. In Section 2.2, we construct the
family Auniv/Sg. In Section 2.3, we define a notion of singular cohomology for a
family f : X→ S of complex manifolds, and apply this to Auniv/Sg.

2.1 H1(V/Λ;Z) = Λ
Let V be a complex vector space of dimension g. A discrete subgroup Λ of V of
rank 2g is called a lattice. A complex torus is a quotient X = V/ΛwhereΛ is a lattice
in V . It is a g-dimensional complex Lie group. We will denote by q : V → X the
canonical projection.
Proposition 2.1.1. There is a canonical isomorphism Λ ∼= π1(X, 0), given by mapping a
lattice point λ to the homotopy class of the loop s 7→ sλ, s ∈ [0, 1].
Proof. Since V is simply connected, we can regard the canonical projection q as
the universal covering map. We denote by

Autq(V) :=
{

homeomorphisms ϕ : V
∼−→ V such that q ◦ϕ = q

}
9



the automorphism group of the covering q. Let π1(X, x) denote the fundamental
group of X at a point x, and recall that it acts on the fibre q−1(x) in the following
way: given γ ∈ π1(X, x) and v ∈ q−1(x), we set

v · γ := γ̃(1),

where γ̃ : [0, 1]→ V is the unique lift of γ such that γ̃(0) = v. This action is known
as the monodromy action.

First, we claim that Autq(V) is precisely the group of translations tλ, where λ ∈
Λ is a lattice point. Clearly, every tλ belongs to Autq(V), so supposeϕ ∈ Autq(V).
Set λ := ϕ(0); since q ◦ϕ = q, we have λ ∈ Λ. Note that both tλ andϕ send 0 to λ.
Since covering homomorphisms are determined by their value on a single point
[20, Proposition 11.36], we must have ϕ = tλ.

Now, becauseV is simply connected, π1(X) := π1(X, 0) is isomorphic to Autq(V)
via the map γ 7→ ϕγ,where ϕγ is the unique automorphism of q satisfying

ϕγ(v) = v · γ

for all v ∈ Λ = q−1(0) [20, Corollary 12.9]. In particular, given λ ∈ Λ, let γ̃ :
[0, 1] → V be the path γ(s) = sλ, and let γ = q ◦ γ̃. Then by definition of the
monodromy action, we have

ϕγ(0) = γ̃(1) = λ,

since γ̃ is a lift of γ beginning at 0 ∈ V . Hence, ϕγ = tλ.
We have shown that there is an isomorphism

π1(X)
∼−→ Autq(V) = { tλ | λ ∈ Λ } ,

which assigns to the homotopy class of the loop s 7→ sλ the q-automorphism tλ.
It remains to note that { tλ | λ ∈ Λ } ∼= Λ, since the action ofΛ on V by translations
is faithful.

Corollary 2.1.2. There is canonical isomorphismΛ ∼= H1(X;Z). In particular,H1(X;Z)
is a free abelian group of rank 2g.

Proof. Note that since π1(X) ∼= Λ is abelian, it is canonically isomorphic to its
abelianization H1(X;Z).

In fact, the assignment V/Λ 7→ Λ is functorial. Suppose we are given a con-
tinuous map f : V/Λ → V ′/Λ ′ such that f(0) = 0. Then the fact that V is simply
connected and V ′ → V ′/Λ ′ is a covering map implies that f has a unique lift

V V ′

V/Λ V ′/Λ ′

F

f

such that F(0) = 0 [20, Corollary 11.19]. Given λ ∈ Λ, the map

Gλ : V → V ′, v 7→ F(v+ λ) − F(v)

10



is continuous, and its image lies in Λ ′. Since Λ ′ is discrete, Gλ must be constant.
It follows that F(v + λ) = F(v) + F(λ) for all v ∈ V , and in particular, that F|Λ is a
group homomorphism. Hence, the assignment(

V V ′
) (

Λ Λ ′
)f F|Λ (2.2)

defines a functor, in the following sense:

Proposition 2.1.3. The assignment (2.2) defines a functor from the category whose objects
are g-dimensional complex tori and whose morphisms are continuous maps preserving the
base point 0, to the category of abelian groups. The isomorphism of Corollary 2.1.2 is a
natural equivalence between this functor and the homology functor H1(−;Z).

2.2 Definition of Auniv/Sg

Suppose X and S are complex manifolds. We say that a holomorphic map f :
X → S is a family of complex manifolds or a holomorphic family if it is proper, and
everywhere of maximal rank. By the preimage theorem, all the fibres Xs := f−1(s)
are a compact complex manifolds.

Consider a g × g complex matrix τ with positive definite imaginary part. By
definition, such a matrix belongs to the Siegel upper half-space

Sg :=
{
τ ∈Matg×g(C)

∣∣ tτ = τ, Im τ > 0
}
,

a complex manifold of dimension g(g+ 1)/2. Let e1, . . . , eg be the columns of the
g× g identity matrix 1g, and let τ1, . . . , τg be the columns of τ. We consider these
2g vectors as elements of R2g via the R-linear isomorphism z 7→ (Re z, Im z), and
write them as a matrix (

1g Re τ
0 Im τ

)
.

Since Im τ is positive definite, we have

det
(
1g Re τ
0 Im τ

)
= det 1g · det Im τ > 0,

so we see that the vectors e1, . . . , eg, τ1, . . . , τg are linearly independent over R.
Hence,

Λτ := SpanZ(e1, . . . , eg, τ1, . . . , τg)

is a lattice in Cg, and Aτ := Cg/Λτ is a complex torus.
We now define Auniv/Sg, following [5]. Let Z2g act on the product manifold

Cg ×Sg in the following way:(
n1
n2

)
· (z, τ) := (z+ τn1 + n2, τ).

Since this action is proper and free, the quotient space Auniv := Z2g\Cg × Sg is
a complex manifold [18, Theorem 2.2]. The projection π : Auniv → Sg onto the
second factor is then a family of complex manifolds, whose fibre above τ is Aτ.

11



This family is trivial as a family of smooth manifolds. To see this, consider the
point i1g ∈ Sg. If τ is any point in Sg, then we can use the identification Cg ∼= R2g
given by z 7→ (Re z, Im z) to define an R-linear isomorphism

Φτ :=

(
1g Re τ
0 Im τ

)−1

: Cg → Cg. (2.3)

SinceΦτ mapsΛτ ontoΛi1g isomorphically, it lifts to a diffeomorphismAτ ∼= Ai1g ,
which we also denote byΦτ. We define

Φ : Auniv → Ai1g ×Sg, (z, τ) 7→ (Φτ(z), τ).

Note thatΦ is a diffeomorphism, and that it makes the diagram

Auniv Ai1g ×Sg

Sg

π

Φ

proj2
(2.4)

commute. We say that Φ is a smooth trivialisation of the family Auniv/Sg. In fact,
since the baseSg is contractible, the existence of a smooth trivialisation forAuniv/Sg

is a particular case of Ehresmann’s lemma:

Theorem 2.2.1. Let f : X→ S be a proper submersion between smooth manifolds. If S is
contractible, then for any point 0 ∈ S, there exists a commutative diagram

X X0 × S

S

f

Φ

proj2

,

where Φ is a diffeomorphism.

Proof. See [7, Lemma 10.2].

2.3 Cohomology varying in a family
In this section, we define a relative notion of cohomology for a holomorphic family
of complex manifolds, following the approach taken in [27] and [1]. Our aim is to
define a holomorphic vector bundle on the base S (or what is the same, a locally
free sheaf ofOS-modules), in such a way that the fibre at a point s can be identified
with the singular cohomology space Hk(Xs;C).
Remark. When we say ‘relative’, we will always mean it in the sense of algebraic
geometry (which has to do with Grothendieck’s emphasis on studying proper-
ties of morphisms rather than objects), and not in the sense of algebraic topology
(which is about the singular (co)homology of a space relative to a subspace).
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We begin by recalling the notions of constant sheaf and local system. Fix a
finite-dimensional complex vector space V . If U is an open subset of S (or X), a
map g : U→ V is said to be locally constant if it is continuous, whenV is considered
to have the discrete topology. The constant sheaf V of stalk V has sections

V(U) := { locally constant maps U→ V } ;

it is the sheaf onS associated to the presheafU 7→ V . A sheafV onS is locally constant
if there is an open covering U of S such that for each U ∈ U, the restriction V |U is
isomorphic to a constant sheaf. We also say that V is a local system.

Now let C denote the constant sheaf of stalk C on X, and consider the higher
pushforward Rkf∗C. This is the sheaf on S associated to the presheaf

U 7→ Hk(f−1(U),C|U).

Lemma 2.3.1. The stalk of Rkf∗C at a point s ∈ S is isomorphic to Hk(Xs;C).

Proof. Since the contractible neighbourhoods of s form a local basis for s, in com-
puting the stalk (

Rkf∗C
)
s
= lim−→

U3s
Hk(f−1(U),C|U)

we may assume U is contractible. In this case, we have f−1(U) ∼= Xs ×U as differ-
entiable manifolds by Ehresmann’s lemma, so

Hk(f−1(U),C|U) ∼= Hk(f−1(U);C) ∼= Hk(Xs ×U;C).

But since U is contractible, Xs ×U is homotopy equivalent to U, so we have

Hk(Xs ×U;C) ∼= Hk(Xs;C),

by the homotopy invariance of singular cohomology.

Proposition 2.3.2. The sheaf Rkf∗C is a local system of vector spaces on S.

Proof. Let U ⊆ S be a contractible open set, and choose some base point 0 ∈ U.
By Ehresmann’s lemma, the family is trivial overU, so that we have a commuting
diagram

f−1(U) X0 ×U

U

f

Φ

proj2

.

Since Φ is a homeomorphism, we have

Hk(f−1(V);C) = Hk(Φ−1(proj−1
2
(V));C)

∼= Hk(proj−1
2
(V);C),

so the sheaves Rkf∗C and Rkproj
2∗C are isomorphic (here C denotes the constant

sheaves of stalk C on f−1(U) and X0 ×U respectively).
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We claim that Rkproj
2∗C is isomorphic to a constant sheaf. Its stalk at every

point s ∈ U is canonically isomorphic to Hk(X0;C), since U is contractible. How-
ever, we still have to show that its sections over an open setV ⊆ U can be identified
with the locally constant functions V → Hk(X0;C).

By definition, elements of Rkproj
2∗C(V) are collections of germs

(gs)s∈V ∈
∏
s∈V

Hk(X0;C)

that are compatible, in the sense that for every point s ∈ V , there exists an open
neighbourhood V ′ ⊆ V of s and a section σ ∈ Hk(proj−1

2
(V ′),C|V ′) such that σs ′ =

gs ′ for all s ′ ∈ V ′. Note that we may assume V ′ is contractible, since S is locally
contractible. In this case, we have

Hk(proj−1
2
(V ′),C|V ′) = Hk(X0 × V ′,C|V ′)

∼= Hk(X0;C).

It follows that the section (gs)s∈V must be constant on V ′, and hence on the con-
nected components of V .

The next two lemmas imply that Rkf∗C is a locally free C-module, where C is
the constant sheaf on the base S.

Lemma 2.3.3. Let S be a complex manifold. Then every sheaf V of finite-dimensional
complex vector spaces on S has the structure of a C-module.

Proof. Let f ∈ C(U) and σ ∈ V(U) be sections over an open subset U of S. Since
f is locally constant, it is constant on the connected components Ui of U, which
are open since S is locally connected. Let ci ∈ C be the value of f on Ui, and note
that ciσ|Ui ∈ V(Ui). We define f · σ ∈ V(U) to be the section obtained by gluing
together the ciσ|Ui .

Lemma 2.3.4. Let V be an n-dimensional complex vector space, and let V be the constant
sheaf on S of stalk V . Then V ∼= C⊕n as C-modules.

Proof. If v1, . . . , vn is a basis of V , then the constant functions x 7→ vi on S are a
basis of global sections for V .

Corollary 2.3.5. Every local system V of complex vector spaces is a locally free sheaf of
C-modules.

Hence, we can make Rkf∗C into a locally freeOS-module by extending scalars.

Lemma 2.3.6. If V is a locally free C-module on S, then OS ⊗C V is a locally free OS-
module.

Proof. Given f ∈ OS(U) and g⊗ v ∈ OS(U)⊗C(U) V(U), set

f · (g⊗ v) := fg⊗ v.

This makes U 7→ OS(U) ⊗C(U) V(U) into a presheaf of OS-modules. Hence, its
sheafification OS ⊗C V is a sheaf of OS-modules.

14



IfU ⊆ S is an open set on which V is constant, then by Lemma 2.3.4, V |U ∼= C⊕n
for some n ≥ 1, so we have

(OS ⊗C V)|U ∼= OU ⊗C V |U ∼= OU ⊗C C⊕n ∼= O⊕nU ,

which shows that OS ⊗C V is locally free.

Combining these facts, we make the following definition:

Definition 2.3.7. Let f : X → S be a family of complex manifolds. The kth relative
cohomology sheaf of f is the locally free OS-module

Hk(X/S) := OS ⊗C R
kf∗C.

Remark. Note that the stalk ofHk(X/S) at s ∈ S is

Hk(X/S)s = OS,s ⊗C
(
Rkf∗C

)
s
= OS,s ⊗C H

k(Xs;C),

while the fibre OS,s/ms ⊗OS,s Hk(X/S)s may be identified with Hk(Xs;C), since
OS,s/ms

∼= C. (Here ms is the maximal ideal of the local ring OS,s.)
Since our family of complex tori Auniv/Sg is trivial in the smooth sense, the

sheaf Rk(proj
2
)∗C is actually constant. Consequently, Hk(Auniv/Sg) is free. For

k = 1, we have the following explicit basis.

Proposition 2.3.8. There exists a basis of global sections

α1, . . . αg, β1, . . . , βg

ofH1(Auniv/Sg) such that for all τ ∈ Sg, we have (αj)τ = e∗j and (βj)τ = τ
∗
j in the fibre

(Λτ ⊗Z C)∗.

Proof. First, we define sections for the family proj
2
: Ai1g × Sg → Sg. Write

fj := iej, and note that the Z-basis e1, . . . , eg, f1, . . . , fg for the lattice Λi1g also
forms a basis for the 2g-dimensional complex vector space Λi1g ⊗Z C (of course,
the map Λi1g ⊗Z C → Cg is not injective). Hence, the constant functions τ 7→ e∗j ,
τ 7→ f∗j define global sections of the sheaf R1proj

2∗C, which is constant of stalk
H1(Ai1g ;C) = (Λi1g ⊗Z C)∗.

Next, recall that we have an isomorphism R1proj
2∗C ∼= R1π∗C, which is given

on the level of the underlying presheaves by

Φ∗ : H1(proj−1
2
(V);C)→ H1(Φ−1(proj−1

2
(V));C),

whereΦ is the diffeomorphism in Diagram (2.4). So we may define global sections
of R1π∗C by setting

αj := Φ
∗(τ 7→ e∗j ), βj := Φ

∗(τ 7→ ie∗j ).

These sections form a C-basis for R1π∗C, so by extending scalars, we get an OSg-
basis forH1(Auniv/Sg), which we denote by the same symbols.
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It remains to check that the αj and βj restrict to the right thing on the fibres.
Let τ ∈ Sg. For every contractible neighbourhood V of τ, we have a commuting
diagram

H1(Ai1g ;C) H1(Aτ;C)

H1(Ai1g × V ;C) H1(π−1(V);C),

Φ∗τ

Φ∗

where Φτ is the R-linear automorphism of Cg which fixes the ej’s and sends τj to
iej (see Equation (2.3)), and the vertical maps may be interpreted as passing to
the stalks of the presheaves at τ. So on the stalks, the isomorphism R1proj

2∗C ∼=
R1π∗C is given by Φ∗τ. But under the natural equivalence of Proposition 2.1.3, Φ∗τ
corresponds to the map

(Λi1g ⊗Z C)∗ → (Λτ ⊗Z C)∗, ψ 7→ ψ ◦Φτ.

Because e∗j ◦Φτ = e
∗
j and f∗j ◦Φτ = τ

∗
j , we have

(αj)τ = e
∗
j ◦Φτ = e

∗
j , (βj)τ = f

∗
j ◦Φτ = τ

∗
j ,

as required.
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Chapter 3

de Rham cohomology

This chapter is about the de Rham cohomology of the family Auniv/Sg. The fibre
Aτ has a Hodge decomposition

H1dR(Aτ) = Cdu1 ⊕ · · · ⊕ Cdug ⊕ Cdū1 ⊕ · · · ⊕ Cdūg, (3.1)

whereu1, . . . , ug are the standard coordinates onCg. Our main goal is to show that
this decomposition holds on the cohomology of the family, which we interpret
here as the de Rham cohomology sheaf H1dR(Auniv/Sg). We will show that this
sheaf is free on certain sections which globalise the differential forms in (3.1).

In Section 3.1, we review differential forms on a complex manifold X. In Sec-
tion 3.2, we define the relative de Rham cohomology sheaf HkdR(X/S). We then
show that HkdR(X/S) is computed by the smooth relative de Rham complex, and
use this fact to establish its basic properties. In Section 3.3, we prove the relative
Hodge decomposition for H1dR(X/S), assuming that the usual Hodge decompo-
sition holds on the fibres, and we use the Hodge-to-de Rham spectral sequence
to identify the holomorphic part of the decomposition H1,0 with f∗Ω1

X/S. Finally,
in Section 3.4, we give a short proof of the Hodge decomposition for a complex
torus, and deduce the Hodge decomposition forH1dR(Auniv/Sg).

3.1 Differential forms
In this section, we review the concepts of differential forms and de Rham coho-
mology on a complex manifoldX, following Chapter 2 of [27] and Sections 2.1 and
2.2 of [4].

Let X be a complex manifold, and let TX,R denote the tangent bundle on X,
considered as a real manifold. Recall that the complexified tangent bundle TX,C :=
TX,R ⊗ C can be written as a direct sum

TX,C = TX ⊕ T ′X,

where TX is the holomorphic tangent bundle, and T ′X = TX is its complex conjugate
[27, Proposition 2.13]. Hence, the complexified cotangent bundle, which is the
dual bundle of TX,C, decomposes as

T∨X,C = T∨X ⊕ (T ′X)
∨.
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These bundles are trivial over any holomorphic chart (U, (z1, . . . , zn)): local frames
for the tangent subbundles TX and T ′X are given by the vector fields ∂/∂zi and ∂/∂z̄i,
while their duals T∨X and (T ′X)

∨ are trivialised by the dual frames dzi and dz̄i.
If we take exterior powers of the cotangent bundle, we see that it decomposes

as ∧k
T∨X,C =

⊕
p+q=k

∧p
T∨X ⊗C

∧q
(T ′X)

∨. (3.2)

We denote the sheaf of smooth sections of T∨X,C by AkX – it is the sheaf of smooth
k-forms on X. The decomposition (3.2) induces a decomposition of AkX:

AkX =
⊕
p+q=k

Ap,q, (3.3)

where Ap,q is the sheaf of smooth sections of
∧p
T∨X ⊗C

∧q(T ′X)
∨. We say that a

sectionω of Ap,q has type (p, q); in local coordinates z1, . . . , zn, we can writeω as
a linear combination of basic (p, q)-forms

dzI ∧ dz̄J := dzi1 ∧ · · ·∧ dzip ∧ dz̄j1 ∧ · · ·∧ dz̄jq ,

where the coefficients are smooth complex-valued functions. We refer to (3.3) as
the type decomposition.

We now recall the definition of de Rham cohomology. The de Rham complex is
the complex of sheaves

0 C∞X A1X A2X · · · ,d d

where C∞X is the sheaf of smooth complex-valued functions on X, and the exterior
derivative d is given locally by

d(f dzI ∧ dz̄J) := df∧ dzI ∧ dz̄J.

Taking global sections, we get a complex of C-vector spaces

0 C∞(X) A1(X) A2(X) · · ·d d

whose cohomology in degree k is by definition the kth de Rham cohomology group
of X, denoted by HkdR(X).

The type decomposition can sometimes pass to the cohomology of X. Let
Hp,q(X) be the subspace of Hp+qdR (X;C) consisting of classes representable by a
closed (p, q)-form.

Definition 3.1.1. We say that the de Rham cohomology of X carries a Hodge de-
composition if for all k ≥ 0, we have

HkdR(X;C) =
⊕
p+q=k

Hp,q(X).

Remark. The main theorem of Hodge theory states that the de Rham cohomology
of X has a Hodge decomposition if X is compact and admits a Kähler metric; see
e.g. [7, Theorem 8.5].
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Next, we show how the type decomposition induces a decomposition of the
exterior derivative d. Suppose u is a section of Ap,q over some open set U ⊆ X. If
we write u in local coordinates z1, . . . , zn as u =

∑
uI,J dzI∧ dz̄J, then du is a sum

of terms of the form∑
1≤i≤n

∂uI,J

∂zi
dzi ∧ dzI ∧ dz̄J +

∑
1≤i≤n

∂uI,J

∂z̄i
dz̄i ∧ dzI ∧ dz̄J.

It follows that du ∈ Ap+1,q(U)⊕Ap,q+1(U), since the notion of type is a coordinate-
invariant. Letting ∂u and ∂̄u denote the components of du of type (p + 1, q) and
(p, q+ 1) defines sheaf maps

∂ : Ap,q → Ap+1,q, ∂̄ : Ap,q → Ap,q+1,
such that d = ∂+ ∂̄. Note that d2 = (∂+ ∂̄)2 = 0 implies the relations

∂2 = 0, ∂̄2 = 0, ∂∂̄+ ∂̄∂ = 0.

In the language of homological algebra, these relations say exactly that the dia-
gram

... ... ...

A0,2X A1,2X A2,2X · · ·

A0,1X A1,1X A2,1X · · ·

A0,0X A1,0X A2,0X · · ·

∂ ∂

∂

∂̄

∂

∂̄ ∂̄

∂

∂̄

∂

∂̄ ∂̄

(3.4)

is a bicomplex, for which the de Rham complexA·X is the associated total complex.
We denote by

Ωp
X := ker

(
∂̄ : Ap,0X → Ap,1X )

the sheaf of holomorphic p-forms on X, and we define the holomorphic de Rham com-
plex Ω·X to be the complex

0 OX Ω1
X Ω2

X · · · ,∂ ∂

where the differential ∂ is the restriction of the differential of A·,0X toΩ·X.

3.2 de Rham cohomology in a family
Now suppose f : X → S is a family of complex manifolds. Let Xs = f−1(s) be
the fibre of f over some point s ∈ S. Since the inclusion ι : Xs → X is a smooth
embedding, the tangent map Tι identifies the tangent bundle TXs,R of Xs with a
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subbundle of TX,R. We have Tf ◦ Tι = 0 since f ◦ ι is constant, so there is a complex
of vector bundles on Xs:

0 TXs,R (TX,R) |Xs (f∗TS,R) |Xs 0,
Tf|Xs (3.5)

which turns out to be exact, as one sees by applying the dimension formula for
linear maps on the fibres [19, Proposition 5.38]. We define the relative (or vertical)
tangent bundle TX/S,R by the short exact sequence

0 TX/S,R TX,R f∗TS,R 0;Tf

by (3.5), we have (TX/S,R)|Xs = TXs,R. The complexified relative tangent bundle is
denoted TX/S,C := TX/S,R ⊗ C. It follows from the fact that f is holomorphic that
f∗TS,C = f∗TS ⊕ f∗T ′S, and that Tf⊗ C is the direct sum of the maps

(Tf)1,0 : TX → f∗TS and (Tf)0,1 : T ′X → f∗T ′S

(see [27, Subsection 2.2.1]), so we have a decomposition

TX/S,C = TX/S ⊕ T ′X/S,

where TX/S := TX/f∗TS and T ′X/S := T ′X/f∗T ′S.
The complexified relative cotangent bundle is the dual bundle

T∨X/S,C = T∨X/S ⊕ (T ′X/S)
∨.

Sections of its kth exterior power are called relative k-forms; they form a locally free
C∞X -module which we will denote by AkX/S. As in the previous section, we have a
decomposition of AkX/S into types:

AkX/S =
⊕
p+q=k

Ap,qX/S.

The next lemma will allow us to define a relative version of the de Rham com-
plex.

Lemma 3.2.1. We have AkX/S = AkX/f∗AkS, where f∗AkS := C∞X ⊗f−1C∞S f−1AkS is the
pullback sheaf.

Proof. We have a short exact sequence of vector bundles on X:

0 f∗
(∧k

T∨S,C
) ∧k

T∨X,C
∧k
T∨X/S,C 0.

Since the category of complex vector bundles on X is equivalent to the category
of finite locally free C∞X -modules [28, Proposition 8.45], taking sheaves of sections
gives a short exact sequence in the latter category. But the sheaf of sections of a
pullback bundle is the pullback of its sheaf of sections (see [28, Problem 1.18]), so
this sequence is

0 f∗AkS AkX AkX/S 0.

20



Note also that the pullback of the differential f∗dS defines a subcomplex f∗A·S
of A·X.
Definition 3.2.2. We define the relative de Rham complex to be the quotient complex
A·X/S = A·X/f∗A·S.

Note that
(
AkX/S

)
|Xs = AkXs . Hence we can recover A·XS from A·X/S by restricting

to the fibre Xs. As in the previous section, the exterior derivative decomposes as
dX/S = ∂X/S + ∂̄X/S, and A·X/S is the totalisation of the bicomplex

... ... ...

A0,2X/S A1,2X/S A2,2X/S · · ·

A0,1X/S A1,1X/S A2,1X/S · · ·

A0,0X/S A1,0X/S A2,0X/S · · ·

∂ ∂

∂

∂̄

∂

∂̄ ∂̄

∂

∂̄

∂

∂̄ ∂̄

(3.6)

Definition 3.2.3. The relative holomorphic de Rham complex is defined by

Ω·X/S := ker
(
∂̄ : A·,0X/S → A·,1X/S) .

Note thatΩ·X/S is a complex of OX-modules, but that its differential ∂X/S is not
OX-linear, only f−1OS-linear.

Definition 3.2.4. The kth relative de Rham cohomology sheaf is defined by

HkdR(X/S) := Rkf∗
(
Ω·X/S

)
,

where Rkf∗ is the kth right derived functor of the pushforward functor f∗.

To actually compute HkdR(X/S), we will use the complex of smooth relative
forms A·X/S. Recall that a module over a sheaf of rings R on X is called fine if for
every open cover of X, there exists a partition of unity with respect to R that is
subordinate to this cover [27, Definition 4.35], and that fine sheaves are acyclic.
Since C∞X has this property, C∞X -modules such as AkX/S and Ap,qX/S are acyclic. The
following lemma is one consequence.

Lemma 3.2.5. The presheaf U 7→ kerdkX/S(U)/ imdk−1X/S(U) on X is already a sheaf.

Proof. Apply Γ(U,−) to the short exact sequence

0 imdkX/S
∣∣
U

kerdkX/S
∣∣
U

ker dk
X/S

im dk−1
X/S

∣∣
U

0,

and note that the resulting sequence is still exact, since the sheaf imdkX/S|U is fine.
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The next result is an extension of the classical Dolbeault resolution to the rel-
ative situation.

Lemma 3.2.6. The inclusionΩ·X/S ↪→ A·X/S is a quasi-isomorphism.

Proof. Because the de Rham complexA·X/S is the totalisation of the bicomplexA·,·X/S,
is suffices to show that the columns of Diagram (3.6) are exact, so that for each
p ≥ 0, the complex (Ap,·X/S, ∂̄) is an acyclic resolution of Ωp

X/S via the inclusion
Ωp
X/S ↪→ Ap,0X/S [27, Lemma 8.5]. Since we already know that the sheaves Ap,qX/S are

acyclic, it suffices to check that Ap,·X/S is exact in positive degrees.
Let q > 0. We have to show that the complex of sheaves

Ap,q−1X/S Ap,qX/S Ap,q+1X/S

∂̄ ∂̄ (3.7)

is exact. Restricting to the fibre Xs, we obtain a sequence

Ap,q−1Xs
Ap,qXs Ap,q+1Xs

∂̄ ∂̄
, (3.8)

which we already know to be exact, since it is part of the usual Dolbeault reso-
lution of Ωp

Xs
[27, Proposition 2.31]. To deduce the exactness of (3.7) from that of

(3.8), we will make use of the following fact: since X is a locally compact space,
for any compact subset K ⊆ X and any abelian sheaf F on X, we have

Γ (K,F |K) := Γ
(
K, ι−1F

)
∼= lim−→
U⊇K
F(U), (3.9)

where ι : K → X is the inclusion, and the colimit is taken over open sets U con-
taining K [16, Theorem 2.2]. (In general, the association

W 7→ lim−→
U⊇W
F(U),

for W an open subset of K, only defines a presheaf on K, for which ι−1F is the
associated sheaf.)

We will show exactness of (3.7) on the stalks. Let x ∈ Xs ⊆ X, and let

ωx ∈ ker
(
∂̄X/S

)
x
⊆
(
Ap,qX/S

)
x

be the germ at x of a section ω of Ap,qX/S, defined in some open subset of X. Note
that if we restrictω to Xs, we obtain a sectionω|Xs of Ap,qXs such that

(ω|Xs)x ∈ ker
(
∂̄Xs
)
x
⊆
(
Ap,qXs

)
x
.

By exactness of (3.8) at x, there exists an open subset W ⊆ Xs and a section α of
Ap,q−1Xs

over W, such that ω|W = ∂̄Xsα. Let K be a compact subset of W such that
x ∈ K. Now

α|K ∈ Γ
(
K,Ap,q−1Xs

∣∣
K

)
= Γ

(
K,Ap,q−1X/S

∣∣
K

)
,
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so by (3.9), there exists an open subset U of X containing K, and a section β of
Ap,q−1X/S over U, such that β|K = α|K. We have

∂̄X/Sβ|K = ∂̄Xs(β|K) = ∂̄Xs(α|K) = ω|K.

By definition of the colimit, there must be some open set V with K ⊆ V ⊆ U, such
that ∂̄X/Sβ|V = ω|V . Hence,ωx = (∂̄X/Sβ)x, as required.
Theorem 3.2.7. The kth relative de Rham cohomology sheaf is the pushforward of the kth
cohomology sheaf of the complex A·X/S:

HkdR(X/S) = f∗

(
kerdkX/S
imdk−1X/S

)
.

Proof. Note that the sheaves AkX/S are acyclic for the functor f∗, since they are
acyclic for the global sections functor, and for any abelian sheaf F on X, Rif∗(F)
is the sheaf on S associated to the presheaf V 7→ Hi(f−1(V),F |f−1(U)) [14, Proposi-
tion 8.1]. Hence, to computeHkdR(X/S), we apply f∗ toA·X/S and take cohomology.
Since f∗ preserves the exactness of the sequence

0 kerdkX/S AkX/S imdkX/S 0,
dk
X/S

we have

HkdR(X/S) =
ker

(
f∗d

k
X/S

)
im
(
f∗d

k−1
X/S

) = f∗

(
kerdkX/S
imdk−1X/S

)
.

We can use this to verify thatHkdR(X/S) restricts to the right thing on the fibres.
Corollary 3.2.8. The stalk of HkdR(X/S) at a point s ∈ S can be identified canonically
with OS,s ⊗HkdR(Xs).
Proof. Consider the Cartesian square

Xs X

{s} S.

ι

f

If F is an abelian sheaf on X, then the pullback of f∗F along the inclusion {s}→ S

is the stalk Fs, by definition. On the other hand, if we push ι−1F forward onto {s},
we get Γ(Xs, ι−1F). We claim Fs = Γ(Xs, ι−1F). Since f is closed, we have

Fs = lim−→
V3s
F(f−1(V)) = lim−→

U⊇Xs
F(U)

(see the proof of Theorem 6.2 in [16]). But Xs is compact, so this is equal to
Γ(Xs, ι

−1F) by (3.9).
If we apply this to the abelian sheaf kerdkX/S/ imdk−1X/S , we see thatHkdR(X/S)s =

HkdR(Xs) as abelian groups. Hence, we have HkdR(X/S)s = OS,s ⊗ HkdR(Xs) as OS,s-
modules.
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Finally, the following comparison theorem shows HkdR(X/S) is isomorphic to
the cohomology sheafHk(X/S) defined in the previous chapter.

Theorem 3.2.9. We have an isomorphism

HkdR(X/S)
∼= Hk(X/S) := OS ⊗C R

kf∗C,

which restricts the ordinary de Rham isomorphism on the fibres.

Proof. This follows from the fact thatΩ·X/S is a resolution for f−1(OS). For details,
see [1, Section 1.3].

3.3 The Hodge decomposition forH1dR(X/S)

In this section, we prove a relative version of the Hodge decomposition forH1dR(X/S),
assuming that the Hodge decomposition holds on the fibres. For example, this is
the case if X/S is a family of compact Kähler manifolds.

The Hodge filtration is the filtration on the de Rham complex given by

FpAkX/S :=
⊕
r≥p

Ar,k−r.

It induces a filtration on cohomology:

FpHkdR(X/S) := Rkf∗
(
FpA·X/S ↪→ A·X/S) .

From Theorem 3.2.7 and Lemma 3.2.5, we see that sections of FpHkdR(X/S) are pre-
cisely those cohomology classes which are representable by elements of

⊕
r≥pAr,k−r.

Proposition 3.3.1. Suppose f : X → S is a holomorphic family such that the Hodge
decomposition H1dR(Xs) = H1,0(Xs) ⊕ H0,1(Xs) exists for all s ∈ S. Then H1dR(X/S) has
a decomposition

H1dR(X/S) = H1,0 ⊕H0,1,

whereH1,0 andH0,1 are locally free C∞S -submodules whose fibres at s can be identified with
H1,0(Xs) and H0,1(Xs) respectively.

Proof. Define H1,0 := F1H1dR(X/S) and H0,1 := H1,0. These are the subsheaves of
H1dR(X/S) consisting of cohomology classes representable by forms of type (1, 0)
and type (0, 1) respectively. Since restricting a form to smaller open subsets pre-
serves its type, we have H1,0s = C∞S,s ⊗ H1,0(Xs) and H0,1s = C∞S,s ⊗ H0,1(Xs) for all
s ∈ S.

To see that we have a direct sum, suppose U ⊆ S is open. It follows immedi-
ately from the type decomposition that H1dR(X/S)(U) = H1,0(U) + H0,1(U). Let
ω ∈ H1,0(U) ∩ H0,1(U). We then have ωs ∈ H1,0(Xs) ∩ H0,1(Xs) = {0} for all
s ∈ U, since the Hodge decomposition holds for the fibre Xs. Hence, ω = 0,
andH1dR(X/S)(U) = H1,0(U)⊕H0,1(U).
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We will describe this decomposition in another way, using the Hodge-to-de
Rham spectral sequence. We begin by recalling the spectral sequence associated
to a bicomplex (E·,·, d→, d↑) of abelian sheaves, following [26, Part I, Section 1.7].
A similar definition applies to a bicomplex of abelian groups (or in any abelian
category). For each r ≥ 0, we have a collection or page of abelian sheaves Er =
{Ep,qr }, where p, q ∈ Z, together with a sheaf map dr : Ep,qr → Ep+r,q−r+1r satisfying
d2r = 0. On page E0, we have Ep,q0 = Ep,q and d0 = d↑. The first page E1 is then
calculated from E0 by taking cohomology: we have

Ep,q1 =
ker

(
d↑ : Ep,q → Ep,q+1

)
im
(
d↑ : Ep,q−1 → Ep,q

) ,
and d1 is induced from d→ (this makes sense, because all the squares anticom-
mute). This process can be continued. Eventually, it can happen that for r large
enough, the differential dr = 0. We then have

Er = Er+1 = Er+2 = · · · ,

and we say the spectral sequence degenerates at Er. The point is that the limiting
objects Ep,q∞ := Ep,qr partially compute the cohomology of the total complex E· :=
Tot(E·,·) associated to our bicomplex E·,·. That is, if we equip E· with the grading
FpEk := ⊕i≥pEi,p−i, and consider the induced grading FpHk(E·) on cohomology,
then the graded pieces of the cohomology are given by

Ep,q∞ =
FpHp+q(E·)
Fp+1Hp+q(E·) .

Definition 3.3.2. If X is a complex manifold, then its Hodge-to-de Rham spectral
sequence is the spectral sequence associated to the bicomplex of abelian groups
Γ(X,A·,·X ) obtained by applying the global sections functor to (3.4).

Note that ifX is compact and has a Hodge decomposition, then its Hodge-to-de
Rham spectral sequence degenerates on the first page; see the argument preceding
the statement of Theorem 9.10 in [7].

Definition 3.3.3. If f : X→ S is a family of complex manifolds, then the Hodge-to-
de Rham spectral sequence for this family is the spectral sequence associated to the
bicomplex f∗A·,·X/S (i.e. the pushforward of (3.6) onto S).

Theorem 3.3.4. Let f : X → S be a holomorphic family, such that the Hodge decompo-
sition holds on the fibres. Then the Hodge-to-de Rham spectral sequence for f degenerates
at the first page E1.

Proof. Our assumption implies that for all s ∈ S, the Hodge-to-de Rham spectral
sequence for Xs degenerates on the first page. Now if we pass to the fibres at s
in the Hodge-to-de Rham spectral sequence for f, we get the Hodge-to-de Rham
spectral sequence for Xs (c.f. [1, Theorem 1.2, (iv)]), so the maps ∂ in E1 satisfy
∂s = 0 for all s ∈ S. Since being 0 is a stalk-local property for a morphism, this
implies ∂ = 0, as required.
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Remark. For a proof in the algebraic category, see [6, Theorem 5.5].
Note that the qth row of the first page E1 looks like

Rqf∗
(
OX
)

Rqf∗
(
Ω1
X/S

)
Rqf∗

(
Ω2
X/S

)
· · · ,∂ ∂

since Ap,·X/S is an acyclic resolution of Ωp
X/S. So if the Hodge-to-de Rham spectral

sequence for f degenerates at E1, it makes the identification

Rqf∗
(
Ωp
X/S

)
=

FpHp+qdR (X/S)

Fp+1Hp+qdR (X/S)
.

Taking p+ q = 1, we get a short exact sequence

0 f∗Ω
1
X/S H1dR(X/S) R1f∗OS 0, (3.10)

which we refer to as the Hodge exact sequence.

Theorem 3.3.5. Suppose f : X → S is a family of complex manifolds, such that for all
s ∈ S, the Hodge decomposition holds forH1dR(Xs). Then the Hodge exact sequence (3.10)
can be identified with the split exact sequence

0 H1,0 H1dR(X/S) H0,1 0,

of Proposition 3.3.1. In particular, we have identifications f∗Ω1
X/S = H1,0 and R1f∗OS =

H0,1.

3.4 Complex tori revisited
In this section, we will give a short proof of the Hodge decomposition for a com-
plex torus, following [2, Proposition 1.3.5]. We then deduce some consequences
forH1dR(Auniv/Sg).

We begin with differential forms. Suppose X = V/Λ is a complex torus, with
projection q : V → X. Since q is a surjective submersion, the pullback map q∗ :
Ak(X)→ Ak(V) is injective, and we can use it to identifyAk(X) with a subspace of
Ak(V). Note that if ω ∈ Ak(X), then for all λ ∈ Λ, ω is invariant under pullback
by the translation tλ : v 7→ v+ λ since it is well-defined on X. In fact, this property
characterises Ak(X) as a subspace of Ak(V) [25, Proposition 21.8]:

Ak(X) =
{
ω ∈ Ak(V)

∣∣ t∗λω = ω for all λ ∈ Λ
}
.

If ω ∈ Ak(X) satisfies t∗aω = ω for all a ∈ V , then we say that ω is translation
invariant. The translation invariant k-forms on X (or V) form a complex vector
space, which we denote by IFk(X). Note that if u1, . . . , ug are complex coordinates
on V , then the 1-forms dui and dūi belong to IF1(X). In fact, they form a basis, so
we have a decomposition

IF1(X) = Cdu1 ⊕ . . .⊕ Cdug ⊕ Cdū1 ⊕ . . .⊕ Cdūg. (3.11)
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Now consider the de Rham isomorphism H1dR(X)
∼−→ H1(X;C). If we identify

the singular cohomology group H1(X;C) with the dual space H1(X;C)∗, the iso-
morphism is given explicitly by

ω 7→ (
[c] 7→ ∫

c

ω

)
,

where c : [0, 1] → X is a smooth representative of the homology class [c] (see
Equation (18.14) of [19]). Using Corollary 2.1.2, we can view this as a map

ι : H1dR(X)
∼−→ HomC(Λ⊗Z C,C), ι(ω) : λ 7→ ∫

γλ

ω,

where γλ : [0, 1]→ X is the loop γ(s) = sλ.

Proposition 3.4.1. The cohomology of a complex torus X = V/Λ carries a Hodge decom-
position.

Proof. Choose a basis λ1, . . . , λ2g ofΛ, and let x1, . . . , x2g be the corresponding real
coordinate functions on V . Then dx1, . . . , dx2g are translation invariant 1-forms
on X, and they form a basis for IF1(X) over C. On the other hand, since we have
ι(dxi)(λj) =

∫
λj
dxi = δij by definition, the cohomology classes ι(dx1), . . . , ι(dx2g)

form a basis of H1(X;C), dual to the basis λ1, . . . , λ2g of Λ⊗Z C. We conclude that
the canonical map IF1(X)→ H1dR(X) must be an isomorphism.

If we now choose complex coordinatesu1, . . . , ug onV , then the decomposition
(3.11) induces the Hodge decomposition of H1dR(X) on passing to cohomology.

The case k > 1 follows from the fact that the cup product induces an isomor-
phism Hk(X;C) ∼=

∧k
H1(X;C) (see [2, Corollary 1.3.4]).

Remark. Note that even though we called it the ‘Hodge decomposition’, what we
have proved in Proposition 3.4.1 is something weaker than what is implied by the
full strength of Hodge theory, which involves the concepts of harmonic forms and
Dolbeault cohomology.

We use this to compute the de Rham cohomology sheafH1dR(Auniv/Sg).

Proposition 3.4.2. The relative Hodge decomposition holds forH1dR(Auniv/Sg). In fact,
there exists a basis of global sections

du1, . . . , dug, dū1, . . . , dūg (3.12)

forH1dR(Auniv/Sg), such that du1, . . . , dug is a basis forH1,0 and dū1, . . . , dūg is a basis
forH0,1. On the fibres, (3.12) restricts to the canonical basis (3.1) of H1dR(Aτ).

Proof. The existence of the decomposition follows from Propositions 3.3.1 and
3.4.1. Note that by Lemma 3.2.5, elements of Γ(Sg,H1dR(Auniv/Sg)) are represented
by actual global sections of the relative cotangent bundle T∨Auniv/Sg,C. Hence, it is
obvious that the sections dui and dūi exist, and that they have the stated proper-
ties.
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Finally, we compute the image of (3.12) under the relative de Rham isomor-
phism of Theorem 3.2.9, in terms of the basis α1, . . . , αg, β1, . . . , βg of Proposition
2.3.8. The identities (3.13) are Equations (4.2.2.1) and (4.2.2.2) of [13].

Lemma 3.4.3. SupposeX = Cg/Λ is a complex torus, and we are given a basis λ1, . . . , λ2g
of Λ. Then

ι(dui) =
∑
1≤j≤2g

λjiλ
∗
j , ι(dūi) =

∑
1≤j≤2g

λ̄jiλ
∗
j ,

where λji is the ith component of λj = (λj1, . . . , λjg).

Proof. Note that ∫
λj

dui =

∫ 1
0

d(tλji) = λji

∫ 1
0

dt = λji,

and similarly that
∫
λj
dūi = λ̄ji.

From now on, we will drop ι from the notation.

Proposition 3.4.4. The relative de Rham isomorphism makes the identifications

dui = αi +
∑
1≤j≤g

zijβj, dūi = αi +
∑
1≤j≤g

z̄ijβj, (3.13)

where zij = zji are the standard coordinates on Sg.

Proof. It suffices to check (3.13) on the stalks. Let τ ∈ Sg. Applying Lemma 3.4.3
with respect to the basis e1, . . . eg, τ1, . . . τg of Λτ, we see that

(dui)τ = e
∗
i +
∑

1≤j≤g τjiτ
∗
j

= e∗i +
∑

1≤j≤g τijτ
∗
j

= (αi)τ +
∑

1≤j≤g(zij)τ(βj)τ

= (αi +
∑

1≤j≤g zijβj)τ.

Hence, dui = αi +
∑

1≤j≤g zijβj. The second identity is proved similarly.
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Chapter 4

Abelian varieties and modular forms

The previous two chapters have been about the cohomology of families of complex
manifolds, especially the family of complex tori Auniv/Sg. We are now in a posi-
tion to develop in detail the g-dimensional generalisation of the geometric picture
we sketched in Section 1.1. In particular, we can give a geometric interpretation
of Siegel modular forms.

Central to the discussion in Section 1.1 was the action of the modular group
SL2(Z) on the upper half plane H. After defining modular forms as functions that
transform in a special way under this action, we mentioned that the quotient set
SL2(Z)\H classifies the isomorphism classes of elliptic curves. We then considered
the modular curves Y(N) := Γ(N)\H, which are fine moduli spaces for elliptic
curves with level N-structure. By examining the action of SL2(Z) which gives
rise to the universal family Euniv,N/Y(N) as a quotient of Euniv/H, we obtained an
interpretation of the modularity condition (1.1). As a result, we could identify
modular forms with tensor powers of de Rham cohomology classes, and hence
differentiate them using the Gauss-Manin connection.

Theg-dimensional analogue of an elliptic curve is an abelian variety, and Siegel
modular forms are related to abelian varieties in the same way that elliptic mod-
ular forms are related to elliptic curves. The symplectic group Sp

2g
(Z) acts on

the Siegel upper half space Sg in a way that generalises the action of SL2(Z) on
H, and the quotient Sp

2g
(Z)\Sg classifies the isomorphism classes of principally-

polarized abelian varieties. There are Siegel modular varieties Sg,N := Γg(N)\Sg,
which are fine moduli spaces for principally-polarized abelian varieties with level
N-structure. Our main concern in this chapter is with the de Rham cohomology of
the universal familiesAuniv,N over these moduli spaces. We will show that the uni-
versal familyAuniv,N/Sg,N arises as a quotient ofAuniv/Sg by an action of the prin-
cipal congruence subgroup Γg(N), and that this action induces an action on the rel-
ative cotangent bundle T∨Auniv/Sg

such that T∨Auniv,N/Sg,N
= Γg(N)\T∨Auniv/Sg

. It follows
that a Siegel modular form of weight k is a global section of the sheafω⊗kN , where
ωN :=

∧g
πN∗Ω

1
Auniv,N/Sg,N

is the determinant of the Hodge sheaf πN∗Ω1
Auniv,N/Sg,N

.
In Section 4.1, we define abelian varieties as complex tori admitting a polar-

ization, and we show that Auniv/Sg is a family of abelian varieties. In Section 4.2,
we discuss the action of the symplectic group Sp

2g
(R) on Sg. We show that two

fibres Aτ, Aτ ′ of the family Auniv/Sg are isomorphic as polarized abelian varieties
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if and only if their base points τ, τ ′ belong to the same Sp
2g
(Z)-orbit, and we give

an explicit formula for these isomorphisms. We also define the principal congru-
ence subgroups Γg(N), and show that the quotients Sg,N := Γg(N)\Sg are complex
manifolds. In Section 4.3, we construct the family Auniv,N/Sg,N, and we show that
Auniv,N can be interpreted as a quotient Γg(N)\Auniv for an appropriate action of
Γg(N) on Auniv. In Section 4.4, we describe the induced Γg(N)-action on T∨Auniv/Sg

,
prove that T∨Auniv,N/Sg,N

= Γg(N)\T∨Auniv/Sg
, and finish by discussing Siegel modular

forms.

4.1 Complex abelian varieties and polarizations
We review some very classical material about complex abelian varieties, following
the exposition in Birkenhake and Lange’s textbook [2].

Let X = V/Λ be a complex torus. Recall that the group Pic(X) of invertible line
bundles on X can be identified with the sheaf cohomology groupH1(X,O∗X). Now
the sheaf of holomorphic functions OX sits in a short exact sequence

0 Z OX O∗X 1,
exp(2πi·)

called the exponential exact sequence. Part of the corresponding long exact sequence
on cohomology is

H1(X,OX) H1(X,O∗X) H2(X,Z);c1

the map we have labelled c1 is the connecting homomorphism. By the Künneth
formula and Corollary 2.1.2, we have

H2(X,Z) ∼=
∧2

H1(X;Z) ∼=
∧2

HomZ(Λ,Z),

so the map c1 associates to a holomorphic line bundle L ∈ H1(X,O∗X) an integer-
valued alternating form E = c1(L) onΛ, called its first Chern class. If E is extended
to a real alternating form on V , then with some work (see [2, Proposition 2.1.6]),
one can show that it has the property E(iu, iv) = E(u, v) for all u, v ∈ V . It follows
that E is the imaginary part of a form H : V × V → C, defined by

H(u, v) := E(iu, v) + iE(u, v)

for allu, v ∈ V . In fact, it can be easily checked thatH is a Hermitian form; recall that
this means that H is C-linear in its first slot and satisfies H(u, v) = H(v, u) for all
u, v ∈ V . Conversely, if we start with a Hermitian formH on V , then its imaginary
part E = ImH is a real alternating form on V satisfying E(iu, iv) = E(u, v) for
all u, v ∈ V . If the restriction of E to the lattice Λ is integer valued, then (with
some more work; see [2, Proposition 2.1.6] again) one can show that there is a line
bundle on X for which EΛ×Λ is the first Chern class. With this correspondence in
mind, we make the following definition:
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Definition 4.1.1. Suppose X = V/Λ is a complex torus, andH is a Hermitian form
on V . We say that H is a Riemann form on X if its imaginary part E = ImH takes
integral values on Λ×Λ.

The set of Riemann forms on X form a group under addition, known as the
Néron-Severi group NS(X). By the theory we have sketched above, we may identify
NS(X) with the image of the map c1.

Definition 4.1.2. If a Riemann form H ∈ NS(X) is positive definitive, then it is
called a polarization on X.

If H is a polarization on X, then its imaginary part E = E|Λ×Λ can be put into a
certain canonical form. Namely, there exists a basis λ1, . . . , λg, µ1, . . . , µg ofΛwith
respect to which E is given by the matrix(

0 D

−D 0

)
,

withD = diag(d1, . . . dg) a diagonal matrix whose entries are strictly positive and
satisfy di | di+1 for all 1 ≤ i ≤ g − 1 [15, Chapter II, Section 4, Lemma 5]. We say
that the basis λ1, . . . , λg, µ1, . . . , µg is symplectic, and we refer to the list (d1, . . . dg)
as the type of the polarization H. If H has type (1, . . . , 1), then we say that H is a
principal polarization, and that X is principally-polarized.

If L ∈ Pic(X) is a line bundle whose first Chern class is a polarization, then
we say that L is positive definite. One might ask what this entails for L. In fact it
is a theorem of Lefschetz that L is positive definite if and only if for all integers
n ≥ 3, the tensor power L⊗n is very ample; roughly speaking, this means that L has
enough global sections to set up an embedding of X into projective space. 1 In
this case, it follows from Chow’s theorem that X has the structure of a projective
algebraic variety.

Theorem 4.1.3. The following conditions on a complex torus X are equivalent:

1. X is the complex manifold associated to an algebraic variety;

2. X admits a polarization.

Proof. See [23, Chapter I, Section 3] or [2, Theorem 4.5.4].

Definition 4.1.4. A complex torus that admits a polarization is called a complex
abelian variety.

If X is an abelian variety andH is a polarization on X, then we refer to the pair
(X,H) as a polarized abelian variety. A homomorphism of polarized abelian varieties
f : (Y,H ′) → (X,H) is a homomorphism of complex tori f : Y → X such that
H ′ = f∗H.

Proposition 4.1.5. The family Auniv/Sg is a family of principally-polarized abelian va-
rieties.

1A line bundle L is called ample if some tensor power of it is very ample. For line bundles on
complex tori, ample = positive definite.
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Proof. Let τ ∈ Sg, and consider the lattice Λτ in Cg. We can define a Hermitian
form Hτ on Cg by setting

Hτ(z,w) :=
tzy−1w,

where y is the imaginary part of τ. Since y > 0,Hτ is positive definite. To compute
E = ImHτ with respect to the basis τ1, . . . , τg, e1, . . . , eg ofΛ, note thatHτ(ei, ej) is
the i, j-entry of the matrix

t1gy
−11g = y

−1,

while Hτ(τi, ej) is the i, j-entry of

tτy−11g = τy
−1 = xy−1 + i1g,

and Hτ(τi, τj) is the i, j-entry of

tτy−1τ = (x+ iy)y−1(x− iy)

= xy−1x+ xy−1(−iy) + iyy−1x+ iyy−1(−iy)

= xy−1x+ y.

Taking imaginary parts, we find E(τi, ej) = δij and E(ei, ej) = E(τi, τj) = 0, so that
the matrix of E is (

0 1g
−1g 0

)
.

Therefore, Hτ is a principal polarization, and the complex torus Aτ = Cg/Λτ is
a principally-polarized abelian variety. Note that the basis τ1, . . . , τg, e1, . . . , eg is
symplectic with respect to Hτ.

4.2 The action of Sp2g(R) on Sg

Recall that in Section 2.2, we showed Auniv/Sg was smoothly trivial: we had a
diffeomorphism Aτ ′ ∼= Aτ for all τ, τ ′ ∈ Sg. Of course, since diffeomorphisms
need not preserve complex structures, the polarized abelian varieties (Aτ ′ , Hτ ′)
and (Aτ, Hτ) will not be isomorphic in general. However, suppose we do have an
isomorphism

f : (Aτ ′ , Hτ ′)
∼−→ (Aτ, Hτ).

By the discussion preceding Proposition 2.1.3 and Liouville’s theorem from com-
plex analysis, f lifts to a vector space automorphism F of Cg that restricts to an
isomorphism of lattices Λτ ′ ∼= Λτ. Let

tγ =

(
ta tc
tb td

)
∈ GL2g(Z)

be the matrix representation of this isomorphism with respect to the canonical
symplectic bases of Λτ ′ and Λτ (the reason for taking the transpose will become
clear shortly). If we identify Fwith its standard matrix representation, we have

F
(
τ ′ 1g

)
=
(
τ 1g

)
tγ,
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or equivalently,

Fτ ′ = τ ta+ tb = t(aτ+ b) and F = τ tc+ td = t(cτ+ d).

Since F is invertible and τ ′ is symmetric, we get

τ ′ = t(cτ+ d)−1 t(aτ+ b)

= (aτ+ b)(cτ+ d)−1.

Taking imaginary parts of f∗Hτ = Hτ ′ , we find that γ belongs to the real symplectic
group

Sp
2g
(R) :=

{
γ ∈ GL2g(R)

∣∣∣ tγ( 0 1g
−1g 0

)
γ =

(
0 1g

−1g 0

) }
.

Letting Sp
2g
(R) act on Sg via

γτ := (aτ+ b)(cτ+ d)−1,

we have shown one direction of the following lemma (the other direction is proved
by reversing the above reasoning).

Lemma 4.2.1. Every isomorphism between fibres of the family of principally-polarized
abelian varieties Auniv/Sg is given by a diagram of the form

Λτ R2g Cg

Λτ ′ R2g Cg

tγ−1

jτ

tγ−1 t(cτ+d)−1

jτ ′

, (4.1)

where γ = ( a bc d ) ∈ Sp
2g
(Z), τ and τ ′ are related by τ ′ = γτ, and jτ is the change of basis

x 7→ (
τ 1g

)
x.

Conversely, if γ = ( a bc d ) ∈ Sp
2g
(Z) is given, then t(cτ+ d)−1 determines an isomor-

phism of polarized abelian varieties Aτ ∼= Aγτ.

We will now work out the basic properties of the action of Sp
2g
(R) on Sg. It is

not immediately obvious that the definition even makes sense; for example, one
has to check that cτ + d is invertible and that γτ ∈ Sg. These facts follow from a
couple of short calculations (see for instance [11, Section 2]).

Lemma 4.2.2. The action of Sp
2g
(R) on Sg is transitive and proper.

Proof. This proof follows the outline in [8, Exercise 2.1.3]. Given a point τ = x +
iy ∈ Sg, we define a map s : Sg → Sp

2g
(R) by setting

s(τ) :=

(
y
1
2 xy−

1
2

0 y−
1
2

)
∈ Sp

2g
(R),
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where y 12 is the matrix obtained from y by taking square roots of its eigenvalues.
Since s(τ) · i1g = τ, the action of Sp

2g
(R) on Sg is transitive. From the orbit-

stabilizer theorem, we get a Sp
2g
(R)-equivariant bijection Sp

2g
(R)/K ∼= Sg, where

K is the stabilizer of i1g. One computes that

K =

{ (
a b

−b a

)
∈ Sp

2g
(R)
}
.

Since K is canonically isomorphic to the unitary group U(g) via
(
a b
−b a

)
7→ a+ ib,

it is, in particular, a compact subgroup of Sp
2g
(R).

To prove that the action of Sp
2g
(R) on Sg is proper, it suffices to show that if

L ⊆ Sg is a compact subset, then the set of γ ∈ Sp
2g
(R) such that γL ∩ L 6= ∅

is compact. But for any two points e1, e2 ∈ Sg, we have γe1 = e2 if and only if
γ ∈ s(e2)Ks(e1)−1. It follows that{

γ ∈ Sp
2g
(R)

∣∣∣ γL ∩ L 6= ∅
}
= s(L)Ks(L)−1,

and since s is continuous, this is a compact set.

Remark. The existence of the map s in this proof implies Sp
2g
(R) → Sg is trivial

as a principal K-bundle.

Definition 4.2.3. If N is a positive integer, the group

Γg(N) :=
{
γ ∈ Sp

2g
(Z)

∣∣∣ γ ≡ 12g (mod N)
}

is called a principal congruence subgroup of Sp
2g
(Z).

Proposition 4.2.4. If N ≥ 3, the quotient set Sg,N := Γg(N)\Sg a complex manifold in
a canonical way.

Proof. Since Γg(N) is a discrete group, Lemma 4.2.2 implies that its action on Sg is
properly discontinuous. Moreover, by a lemma of Serre [24], Γg(N) acts freely on
Sg for all N ≥ 3. Now apply [18, Theorem 2.2].

4.3 Universal families of abelian varieties
In this section, we construct a universal family over the Siegel modular variety
Sg,N, following the outline in [5]. As with our family of complex tori over Sg, this
family is defined as a quotient of Cg ×Sg by the action of an appropriate group.

Lemma 4.3.1. The symplectic group Sp
2g
(Z) acts on Cg ×Sg via

γ(z, τ) :=
(
t(cτ+ d)−1z, γτ

)
for all γ = ( a bc d ) ∈ Sp

2g
(Z) and (z, τ) ∈ Cg ×Sg.

Proof. This follows from the commutativity of Diagram (4.1), and the fact that
t(γδ)−1 = tγ−1 tδ−1 for all γ, δ ∈ Sp

2g
(Z).
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We now have two group actions on Cg × Sg: the one of Sp
2g
(Z) which we

have just defined, and the one of Z2g which we used to define the familyAuniv/Sg.
Although these actions don’t commute, we can put them together to get an action
of a semidirect product on Cg ×Sg:

Lemma 4.3.2. Let Sp
2g
(Z) n Z2g be the semidirect product of Sp

2g
(Z) and Z2g with

multiplication
(γ,m) ∗ (δ, n) := (γδ, tδm+ n).

Then Sp
2g
(Z)n Z2g acts on Cg ×Sg by

(γ,m) · (z, τ) :=
(
t(cτ+ d)−1(z+ jτm), γτ

)
.

Proof. The identity element of Sp
2g
(Z) n Z2g is (12g, 0), and it is clear that it acts

trivially. It remains to show that

((γ,m) ∗ (δ, n)) · (z, τ) = (γ,m) · ((δ, n) · (z, τ))

for all (γ,m), (δ, n) ∈ Sp
2g
(Z) n Z2g and (z, τ) ∈ Cg × Sg. If γ = ( a bc d ) and

δ =
(
a ′ b ′

c ′ d ′

)
, then we find that

((γ,m) ∗ (δ, n)) · (z, τ) = (γδ, tδm+ n) · (z, τ)
=
(
t
[
(cτ+ d)(c ′τ+ d ′)

]−1 (
z+ jτ

(
tδm+ n

))
, γδτ

)
and

(γ,m) · ((δ, n) · (z, τ)) = (γ,m) ·
(
t(c ′τ+ d ′)−1(z+ jτn), δτ

)
=
(
t(cτ+ d)−1

(
t(c ′τ+ d ′)−1(z+ jτn) + jδτm

)
, γδτ

)
.

Examining these two equations carefully, we see that it is enough to show that

jδτm = t(c ′τ+ d ′)−1jτ
(
tδm

)
.

But this follows immediately from the commutativity of (4.1).

Proposition 4.3.3. If N ≥ 3, there exists a universal family πN : Auniv,N → Sg,N over
the Siegel modular variety Sg,N.

Proof. The action of the subgroup Γg(N)nZ2g onCg×Sg is properly discontinuous
and free if N ≥ 3, so the quotient

Auniv,N := Γg(N)n Z2g\ (Cg ×Sg)

is a complex manifold. Moreover, if we let Γg(N)nZ2g act on Sg by (γ,m) ·τ = γτ,
the projection Cg ×Sg → Sg becomes a Γg(N)n Z2g-equivariant map. Passing to
the quotient defines the family πN : Auniv,N → Sg,N.

In fact, the total space Auniv,N can be obtained directly as a quotient of Auniv:
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Lemma 4.3.4. The group Γg(N) acts onAuniv in such a way that Γg(N)\Auniv = Auniv,N.

Proof. Note that Z2g is a normal subgroup of Γg(N) n Z2g, and that its action on
Cg × Sg coincides with the action with which we defined Auniv in Section 2.2.
Hence, we have an induced action of Γg(N) ∼= Γg(N) n Z2g/Z2g on Auniv such that
Auniv,N = Γg(N)\Auniv.

Explicitly, this action is given as follows: if γ = ( a bc d ) ∈ Γg(N), and ϕγ denotes
the corresponding automorphism ofAuniv, thenϕγ|Aτ =

t(cτ+d)−1 is the isomor-
phism Aτ ∼= Aγτ of Diagram (4.1). Note that we have a commuting diagram

Auniv Auniv,N

Sg Sg,N,

q

π πN

where q denotes the quotient map.

Proposition 4.3.5. The map q : Auniv → Auniv,N is a holomorphic covering map, which
is normal, in the sense that the action of Γg(N) permutes the fibres of q transitively.

Proof. This follows from the fact that Γg(N) acts freely and properly discontinu-
ously on Auniv; see the discussion after Theorem 2.2 in [18].

4.4 The cotangent bundle of Auniv,N/Sg,N

In this section, we show that the action of Γg(N) on Auniv induces an action on
the relative holomorphic cotangent bundle T∨Auniv/Sg

, and that quotienting out by
this action gives rise to T∨Auniv,N/Sg,N

. We then discuss Siegel modular forms. To
lighten the notation, we will write T∨ := T∨Auniv/Sg

and T∨N := T∨Auniv,N/Sg,N
for the

cotangent bundles, and Ω1 := Ω1
Auniv/Sg

and Ω1
N := Ω1

Auniv,N/Sg,N
for their sheaves

of holomorphic sections.
We begin by quoting a general result, which will give Γg(N)\T∨ the structure

of a vector bundle over Auniv,N.

Lemma 4.4.1. Suppose Γ is a discrete group acting by automorphisms on a complex man-
ifold X. We assume the action of Γ is free and properly discontinuous, so that Γ\X is a
complex manifold and the quotient map q : X → Γ\X is a normal holomorphic covering
map. Suppose E is a complex vector bundle on X with the following properties:

(i) Γ acts on E on the left by vector bundle isomorphisms: each map ξ 7→ γξ is a vector
bundle isomorphism over the left translation Lγ.

(ii) E is covered by Γ -equivariant charts. This means that around each point in X, there
is a q-saturated open set U (i.e. U = q−1(U) for some open U ⊆ Γ\X), and a vector
bundle chart

ψ : U× Cn ∼−→ EU

such that ψ(γu, v) = γψ(u, v) for all γ ∈ Γ , u ∈ U, and v ∈ Cn.
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Then the set of orbits Γ\E has a unique vector bundle structure over Γ\X such that the
natural projection \ : E→ Γ\E is a surjective submersion, and a vector bundle morphism
over the projection q : X→ Γ\X. Moreover, the diagram

E Γ\E

X Γ\X

\

q

is a pullback.

Proof. See [22, Proposition 3.1.1] for a more general statement involving the action
of a Lie group G on a principal G-bundle. We have adapted this statement to
describe our situation – the special case where G is discrete – more explicitly.

Let Γg(N) act on T∨ = Auniv × Cdu1 ⊕ · · · ⊕ Cdug by γ 7→ (ϕ∗γ)
−1. To see that

this makes sense, note that if we label the entries of t(cτ+d)−1 as aij, we find that

ϕ∗γ(dui) = d(ui ◦ϕγ) = d(
∑

j aijuj) =
∑

j aijduj.

So (ϕ∗γ)
−1 is given on T∨Aτ by t(cτ+ d); in particular, it preserves the du ′is.

Lemma 4.4.2. The action γ 7→ (ϕ∗γ)
−1 of Γg(N) on T∨Auniv/Sg

satisfies the two conditions
of Lemma 4.4.1.

Proof. First, note that the diagram

T∨ T∨

Auniv Auniv

(ϕ∗γ)
−1

ϕγ

commutes, so condition (i) is satisfied.
Now let U be an evenly covered open subset of Auniv,N. Let U := q−1(U), and

choose a section s : U→ U. This determines a Γg(N)-equivariant isomorphism

Γg(N)×U ∼= U, (γ, x) 7→ ϕγ(s(x)). (4.2)

Define a map

ψ : Γg(N)×U× Cg → U× Cdu1 ⊕ · · · ⊕ Cdug = T∨U
by

ψ(γ, x, v) :=
(
ϕγ(s(x)), (ϕ

∗
γ)

−1
(∑

i vidui
))
,

where
∑

i vidui ∈ T∨s(x). Note that ψ is an isomorphism and is linear on the fibres,
so it is a local trivialisation of T∨U . Moreover, the diagram

Γg(N)×U× Cg U× Cdu1 ⊕ · · · ⊕ Cdug

Γg(N)×U× Cg U× Cdu1 ⊕ · · · ⊕ Cdug

Lγ×id× id

ψ

ϕγ×(ϕ∗γ)−1

ψ
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is commutative, soψ is Γg(N)-equivariant. Hence, if we use (4.2) to identify Γg(N)×
U in the domain of ψwith U, we have the required equivariant chart.

It follows that Γg(N)\T∨ is a vector bundle over Auniv,N in a canonical way.

Proposition 4.4.3. There is an isomorphism

Γg(N)\T∨Auniv/Sg
∼= T∨Auniv,N/Sg,N

(4.3)

of vector bundles over Auniv,N.

Proof. This is clear from inspection of the equivariant charts ψ we constructed in
the proof of the previous lemma.

We now consider the pullback bundles ε∗NT∨N and ε∗T∨ along the zero sections
εN : Sg,N → Auniv,N and ε : Sg → Auniv.

Lemma 4.4.4. The isomorphism (4.3) pulls back along the zero sections to an isomorphism
of vector bundles on Sg,N:

Γg(N)\ε∗T∨Auniv/Sg
∼= ε∗NT

∨
Auniv,N/Sg,N

.

Proof. Note that ε and εN are holomorphic embeddings, so we can identify ε∗T∨
with the restricted bundle T∨ε(Sg), and ε∗NT∨N with T∨N |εN(Sg,N). Since the subbundle
T∨ε(Sg) is preserved by the action of Γg(N), the quotient bundle Γg(N)\T∨ε(Sg) is a
subbundle of Γg(N)\T∨. It is clear that (4.3) identifies this quotient with T∨N |εN(Sg,N).

Definition 4.4.5. Suppose we are in the situation of Lemma 4.4.1. We say that a
section σ : X→ E of E is Γ -invariant if σ(γx) = γσ(x) for all γ ∈ Γ and x ∈ X.

The point of this notion is that Γ -invariant sections of E descend to sections of
Γ\E, and every section of Γ\E arises from a Γ -invariant section of E in this way.

Proposition 4.4.6. The sheaves of holomorphic and smooth sections of the vector bundle
ε∗NT

∨
Auniv,N/Sg,N

are characterised in terms of the action of Γg(N) as follows:

(i) The sheaf of holomorphic sections ε∗NΩ1
Auniv,N/Sg,N

is isomorphic to theOSg,N-submodule
of ε∗Ω1

Auniv/Sg
consisting of the Γg(N)-invariant holomorphic sections.

(ii) The sheaf of smooth sections ε∗NA1,0Auniv,N/Sg,N
is isomorphic to the C∞Sg,N-submodule

of ε∗A1,0Auniv/Sg
consisting of the Γg(N)-invariant smooth sections.

Proof. This follows from Lemma 4.4.4 and [22, Proposition 3.1.4].

Corollary 4.4.7. We have an isomorphism of C∞Sg,N-modules

ε∗NA1,0Auniv,N/Sg,N
∼= C∞Sg,N ⊗OSg,N

ε∗NΩ
1
Auniv,N/Sg,N

.

Proof. Note that ε∗A1,0 := ε∗A1,0Auniv/Sg
is the free C∞Sg-module on the basis of global

sections du1 ◦ ε, . . . , dug ◦ ε, while ε∗Ω1 is the freeOSg-module on the same basis.
Hence, ε∗A1,0 = C∞Sg ⊗OSg

ε∗Ω1. Now use Proposition 4.4.6.
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Since ε∗T∨ is trivial, its Γg(N)-invariant sections are naturally identified with
functions f : Sg → Cg satisfying

f(γτ) = t(cτ+ d)f(τ) (4.4)

for all γ = ( a bc d ) ∈ Γg(N) and all τ ∈ Sg. This functional equation is related to the
functional equation for Siegel modular forms.

Definition 4.4.8. Let k ∈ Z. A Siegel modular form of weight k is a holomorphic
function f : Sg → C such that

f(γτ) = det(cτ+ d)kf(τ) (4.5)

for all γ = ( a bc d ) ∈ Γg(N) and all τ ∈ Sg. We say that f has degree g and level N. 2

Definition 4.4.9. Let k ∈ Z. A C∞ Siegel modular form of degree g, weight k and level
N is a smooth function f : Sg → C satisfying (4.5). 3

Remark. From Proposition 4.4.6, we see that Siegel modular forms are global sec-
tions of the line bundle (

∧g
ε∗NT

∨
N)
⊗k.

The next lemma connects holomorphic functions f : Sg → Cg satisfying (4.4)
and sections of the de Rham cohomology sheafH1dR(Auniv,N/Sg,N).

Lemma 4.4.10. There is an isomorphism of OSg,N-modules

πN∗Ω
1
Auniv,N/Sg,N

∼= ε∗NΩ
1
Auniv,N/Sg,N

.

Proof. We first give an isomorphism π∗Ω
1 ∼= ε∗Ω1. Note that π∗Ω1 is free on the

sections du1, . . . , dug of the bundle T∨, and that the action of OSg is given by
f dui := f ◦ πdui. On the other hand ε∗Ω1 is the sheaf of sections of the pullback
bundle ε∗T∨. Since the fibre of this bundle above a point τ ∈ Sg is the cotan-
gent space of Aτ at 0, a section σ : Sg → ε∗T∨ can be written as an OSg-linear
combination

σ = f1 du1 ◦ ε+ · · ·+ fg dug ◦ ε.
Hence, the assignment dui 7→ dui ◦ ε gives an OSg-linear isomorphism π∗Ω

1 ∼=
ε∗Ω1. Since this isomorphism preserves Γg(N)-invariant sections, it lifts to the
desired isomorphism πN∗Ω

1
N
∼= ε∗NΩ

1
N.

We will write

ω :=
∧g

π∗Ω
1
Auniv/Sg

, ωN :=
∧g

πN∗Ω
1
Auniv,N/Sg,N

for the determinants of the Hodge sheaves of the familiesAuniv/Sg andAuniv,N/Sg,N,
and

ω∞ := C∞Sg ⊗OSg
ω, ωN,∞ := C∞Sg,N ⊗OSg,N

ωN

for the sheaves obtained from ω and ωN by tensoring with the smooth structure
sheaves.

2If g = 1, we should also require that f is holomorphic at∞. (Holomorphicity at∞ is automat-
ically satisfied if g > 1, by the Koecher principle.)

3One normally imposes a growth condition at ∞. Following Harris [13, Section 1.1], we will
ignore this condition, since it won’t play a role in our construction.
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Theorem 4.4.11. We have bijective correspondences between the following pairs of sets:

(i) global sections ofω⊗kN and Siegel modular forms of weight k and level N;

(ii) global sections ofω⊗kN,∞ and C∞ Siegel modular forms of weight k and level N.

Proof. For (i), note that det t(cτ+d) = det(cτ+d), and combine Proposition 4.4.6
with Lemma 4.4.10. Part (ii) follows from the same considerations and Corollary
4.4.7.

Remark. An interesting consequence of this result is that everyC∞ Siegel modular
form can be written as a C∞Sg,N(Sg,N)-linear combination of holomorphic forms.
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Chapter 5

The C∞ theta operator

We assemble everything we have developed in the previous chapters to define an
operator

ΘN : ω⊗kN,∞ → ω
⊗(k+2)
N,∞ .

The key to the construction of ΘN is the Gauss-Manin connection∇∞, which pro-
vides a means of differentiating relative de Rham cohomology classes: since the
sheaf of Siegel modular formsω⊗kN,∞ is a subsheaf of the twisted cohomology sheaf
H1∞(Auniv,N/Sg,N)

det⊗k , we can apply a twist of ∇∞ to differentiate its sections.
Postcomposing this with a projection onto the holomorphic part of cohomology
defines a map

ϑ0,k : ω⊗kN,∞ → Sym2 EN,∞ ⊗ω⊗kN,∞,
where EN,∞ := H1,0∞ (Auniv,N/Sg,N). Iterating this procedure, we define further
maps ϑ1,k, . . . , ϑg−1,k, such that composing them, we get a map

ϑg−1,k ◦ · · · ϑ1,k ◦ ϑ0,k : ω⊗kN,∞ → (Sym2 EN,∞)⊗g ⊗ω⊗kN,∞.
Now the representation (Sym2 std)⊗g is reducible and contains a copy of (det std)⊗2,
so (Sym2 EN,∞)⊗g contains a copy ofω⊗2N,∞. Projecting onto this copy defines ΘN.

In Section 5.1, we show that if k is a field of characteristic 0 or of prime char-
acteristic p ≥ g + 2, then the representation (Sym2 std)⊗g of GLg(k) contains
(det std)⊗2 as an irreducible factor. In Section 5.2, we define the Gauss-Manin
connection on H1dR(X/S), and show how to twist it by certain representations. In
Section 5.3, we discuss the analytic Kodaira-Spencer isomorphism and give the
construction of ΘN. Finally, in Section 5.4, we calculate ΘN in the case g = 2.

5.1 A one-dimensional factor of (Sym2 std)⊗g

Let k be a field, and let E be a vector space over k of dimension g ≥ 1. Consider
the linear representation (Sym2 E)⊗g. We want find a one-dimensional subrepre-
sentation that is isomorphic to (det E)⊗2 =

∧g(E)⊗
∧g(E). We start by defining a

map
f : (E⊗ E)⊗g →∧g

(E)⊗
∧g

(E)
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by
(u1 ⊗ v1)⊗ · · · ⊗ (ug ⊗ vg) 7→ u1 ∧ · · ·∧ ug ⊗ v1 ∧ · · ·∧ vg.

Consider the action of the symmetric group S2 on E ⊗ E, which is given on pure
tensors by permuting the two factors:

(12) : u⊗ v 7→ v⊗ u.

This action extends to an action of S×g2 on (E⊗ E)⊗g, via

(κ1, . . . , κg) · x1 ⊗ · · · ⊗ xg := κ1 · x1 ⊗ · · · ⊗ κg · xg.

Givenω ∈ (E⊗ E)⊗g, we define

ϕ(ω) :=
∑

(κ1,...,κg)∈S×g2

f((κ1, . . . , κg) ·ω).

This map ϕ is clearly GLg(k)-equivariant. Moreover, it is symmetric in ui and vi
for each i, so it factors through (Sym2 E)⊗g:

(Sym2 E)⊗g
∧g(E)⊗

∧g(E)

(E⊗ E)⊗g.

∃! ϕ̃

ϕ

We will show below that ϕ̃ is surjective, so that we have a short exact sequence

0 ker ϕ̃ (Sym2 E)⊗g
∧g(E)⊗

∧g(E) 0.
ϕ̃ (5.1)

To show that this sequence splits, we will exhibit a right-inverse for ϕ̃. As a first
approximation, define a GLg(k)-equivariant map ψ : E⊗g ⊗ E⊗g → (Sym2 E)⊗g by

ψ((u1 ⊗ · · · ⊗ ug)⊗ (v1 ⊗ · · · ⊗ vg)) :=∑
(σ,τ)∈Sg×Sg

sgn(σ) sgn(τ)uσ1 · vτ1 ⊗ · · · ⊗ uσg · vτg.

By construction, ψ is alternating both in the ui and in the vi, so it factors through∧g(E)⊗
∧g(E) : ∧g(E)⊗

∧g(E) (Sym2 E)⊗g

E⊗g ⊗ E⊗g.

∃! ψ̃

ψ

Choose a basis e1, . . . , eg for E, so that (e1 ∧ · · · ∧ eg)⊗2 is a basis for
∧g(E)⊗2. Its

image under ψ̃ is a sum of terms of the form

sgn(σ) sgn(τ) eσ1 · eτ1 ⊗ · · · ⊗ eσg · eτg,

with σ, τ ∈ Sg. To what multiple of (e1∧ · · ·∧eg)⊗2 does ϕ̃ send these summands?
We first consider the case where σ = (1).
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Lemma 5.1.1. Let τ ∈ Sg. Then

ϕ̃(sgn(τ) e1 · eτ1 ⊗ · · · ⊗ eg · eτg) = 2r (e1 ∧ · · ·∧ eg)⊗2,

where r is the number of disjoint cycles in the cycle decomposition of τ.

Proof. Letω = (e1⊗ eτ1)⊗· · ·⊗ (eg⊗ eτg), and note that each of the 2g summands
of ϕ̃(e1 · eτ1 ⊗ · · · ⊗ eg · eτg) is obtained by acting on ω by S×g2 , then applying the
map f. We record the indices ofω in an array:(

1 2 · · · j · · · g

τ1 τ2 · · · τj · · · τg

)
,

where the i, j-entry is the index of the basis element located in ith factor of E,
within the jth copy of E ⊗ E. Now if (κ1, . . . , κg) ∈ S×g2 , then the index array of
(κ1, . . . , κg) ·ω is obtained from that ofω by permuting within the columns:(

κ1(1) · · · κj(j) · · · κg(g)
κ1(τ1) · · · κj(τj) · · · κg(τg)

)
.

We can then read off f((κ1, . . . , κg) ·ω) from the rows:

f((κ1, . . . , κg) ·ω) = eκ1(1) ∧ . . .∧ eκg(g) ⊗ eκ1(τ1) ∧ · · ·∧ eκg(τg).

In particular, note that f sends (κ1, . . . , κg) ·ω to 0 exactly when either row of its
array contains a repeated index.

In fact, there are precisely 2r elements of S×g2 which, when they act on the index
array of ω, do not produce a row-repeated index. To see this, suppose that such
an element has exchanged i0 in the top row with i1 = τ(i0) in the bottom row. Let
(i0 i1 . . . is) be the cycle appearing in the decomposition of τ to which i0 belongs.
We claim that for each 0 ≤ j ≤ s, the ij which was originally in the top row has
been swapped with τ(ij) in the bottom row. If s = 0, the claim is true. Otherwise,
the i1 in the top row must have been exchanged with τ(i1) in the bottom row,
since if not, the top row would contain two i1’s. Continuing like this establishes
the claim.

Finally, we need to know that

sgn(τ) eκ1(1) ∧ . . .∧ eκg(g) ⊗ eκ1(τ1) ∧ · · ·∧ eκg(τg) = (e1 ∧ · · ·∧ eg)⊗2.

If we let ρ1, ρ2 denote the two rows of the array(
κ1(1) · · · κj(j) · · · κg(g)
κ1(τ1) · · · κj(τj) · · · κg(τg)

)
thought of as permutations of { 1, 2, . . . , g } in one-line notation, then what we have
to show is that sgn(ρ1) sgn(ρ2) = sgn(τ). In fact, τ = ρ1ρ2. To see this, just note
that if τ factors into disjoint cycles as τ = τ1 · · · τr, and the action of S×g2 exchanges
the indices belonging to the cycles τj1 , . . . , τjl , then ρ2 fixes each of these indices
while agreeing with τ outside of them, while ρ1 = τj1 · · · τjl .
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Lemma 5.1.2. Let σ, τ ∈ Sg. Then
ϕ̃(sgn(σ) sgn(τ) eσ1 · eτ1 ⊗ · · · ⊗ eσg · eτg) = 2r (e1 ∧ · · ·∧ eg)⊗2,

where r is the number of disjoint cycles in the cycle decomposition of σ−1τ.
Proof. Note that if (κ1, . . . , κg) ∈ S×g2 , we have

sgn(σ)sgn(τ) eκ1(σ1) ∧ . . .∧ eκg(σg) ⊗ eκ1(τ1) ∧ · · ·∧ eκg(τg)
= sgn(σ−1τ) eκ1(1) ∧ . . .∧ eκg(g) ⊗ eκ1(σ−1τ1) ∧ · · ·∧ eκg(σ−1τg).

Then follow the proof of the previous lemma.

Recall that the number of permutations of { 1, 2, . . . , g } with exactly r disjoint
cycles is counted by the Stirling cycle number

[
g
r

]
.

Lemma 5.1.3. Let g ≥ 1 be an integer. We have∑
1≤r≤g

[
g

r

]
2r = (g+ 1)! .

Proof. We argue inductively. The result clearly holds for g = 1, so suppose it is
true for some g ≥ 1. Using the recurrence relation of the Stirling cycle numbers,
we obtain ∑

1≤r≤g+1

[
g+ 1

r

]
2r =

∑
1≤r≤g+1

(
g

[
g

r

]
+

[
g

r− 1

])
2r

= g
∑

1≤r≤g+1

[
g

r

]
+
∑
0≤r≤g

[
g

r

]
2r+1

= g
∑
1≤r≤g

[
g

r

]
+ 2
∑
1≤r≤g

[
g

r

]
2r

= g(g+ 1)! + 2(g+ 1)!

= (g+ 2)! .

Lemma 5.1.4. We have ϕ̃ ◦ ψ̃ = g!(g+ 1)! · id.
Proof. We write r(σ) for the number of disjoint cycles in the decomposition of a
permutation σ. We have

ϕ̃ ◦ ψ̃
(
(e1 ∧ · · ·∧ eg)⊗2

)
= ϕ̃

∑
σ,τ∈Sg

sgn(σ) sgn(τ) eσ1 · eτ1 ⊗ · · · ⊗ eσg · eτg


=
∑
σ∈Sg

∑
τ∈Sg

2r(σ
−1τ)(e1 ∧ · · ·∧ eg)⊗2

=
∑
σ∈Sg

∑
τ∈Sg

2r(τ)(e1 ∧ · · ·∧ eg)⊗2

= g!

(∑
1≤r≤g

[
g

r

]
2r

)
(e1 ∧ · · ·∧ eg)⊗2

= g!(g+ 1)!(e1 ∧ · · ·∧ eg)⊗2.
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Theorem 5.1.5. If the characteristic of k is 0 or a prime p ≥ g+ 2, then (Sym2 E)⊗g has
a subrepresentation isomorphic to (det E)⊗2. The formula for projection onto this factor is
given by ϕ̃.

Proof. In this case, 1
g!(g+1)!

ψ̃ is a right-inverse for ϕ̃, so it splits the short exact se-
quence (5.1).

Remark. Compare the results in this section with [10], in particular the map β on
page 96.

5.2 The twisted Gauss-Manin connection
In this section, we discuss the parts of the construction ofΘ that apply to a general
family of complex manifolds X/S. We assume that the fibres of X/S have a Hodge
decomposition, so that by Proposition 3.3.1 and Theorem 3.3.5, we have a splitting

H1dR(X/S) = H1,0 ⊕H0,1,

such thatH1,0 is identified with the Hodge sheaf f∗Ω1
X/S.

We begin by defining the Gauss-Manin connection onH1(X/S), following [27,
Definition 9.13] and [1, Section 2.A]. Conceptually, this provides a means of dif-
ferentiating cohomology classes with respect to coordinates on the base S.

Definition 5.2.1. Let E be a locally freeOS-module. A connection on E is a C-linear
map of sheaves

∇ : E → Ω1
S ⊗OS E ,

satisfying the Leibniz rule

∇(fσ) = df⊗ σ+ f∇(σ),

where f ∈ OS(U) and σ ∈ E(U) are sections over some open U ⊆ S.

Remark. A similar definition applies to C∞S -modules.
For example, the exterior derivative ∂ : OS → Ω1

S is a connection on OS. More
generally, if V is a local system of vector spaces on S, then∇ = ∂⊗1 is a connection
on the associated OS-module OS ⊗C V . Note that ker∇ = V .

Definition 5.2.2. The connection

∇ := ∂⊗ 1 : H1(X/S)→ Ω1
S ⊗OS H1(X/S)

onH1(X/S) is called the Gauss-Manin connection.

We need a smooth extension of∇ to the C∞S -moduleH1∞(X/S) := C∞S ⊗CR
1f∗C.

Definition 5.2.3. The connection

∇∞ := ∂⊗ 1 : H1∞(X/S)→ A1,0S ⊗C∞S H1∞(X/S)

onH1∞(X/S) is called the C∞ Gauss-Manin connection.
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By definition, the operator ∂ : C∞S → A1,0S restricts to ∂ : OS → Ω1
S, so the

connections ∇ and ∇∞ agree on H1(X/S). Note that we can use the relative de
Rham isomorphism to get connections onH1dR(X/S) and C∞S ⊗OS H1dR(X/S).

Consider a representation of the form

κ = κj,k := (Sym2 std)⊗j ⊗ (det std)⊗k, (5.2)

where j ≥ 1 and k ≥ 1. We will ‘twist’ the sequence

H1,0 H1,0 ⊕H0,1 H1,0i p

by κ. Taking determinants gives∧gH1,0
⊕

µ+ν=g

∧µH1,0 ⊗
∧νH0,1

∧gH1,0,idet pdet

while taking symmetric squares gives

Sym2H1,0
⊕

µ+ν=2 SymµH1,0 ⊗ SymνH0,1 Sym2H1,0.iSym2 pSym2

Taking tensor powers then gives maps idet⊗k , pdet⊗k and i(Sym2)⊗j , p(Sym2)⊗j . Tensor-
ing these maps together, we obtain a sequence which we will denote by(

H1,0
)κ (

H1dR
)κ (

H1,0
)κ
.

iκ pκ

We also have a smooth version of this sequence:(
H1,0∞ )κ (

H1∞)κ (
H1,0∞ )κ,iκ pκ

which we get by tensoring with C∞S .
Note that we can extend ∇∞ to a connection ∇⊗k∞ on (H1∞)⊗k via the Leibniz

rule:
∇⊗k∞ (v1 ⊗ · · · ⊗ vk) :=

∑
1≤i≤g

σi
(
v1 ⊗ · · · ⊗ ∇∞(vi)⊗ · · · ⊗ vg

)
,

where v1, . . . , vg are sections of (H1∞)⊗k over some open subset of S, and

σi :
(
H1∞)⊗(i−1) ⊗A1,0S ⊗ (H1∞)⊗(k−i+1) ∼−→ A1,0S ⊗ (H1∞)⊗k

is the isomorphism that swaps the 1st and ith factors. In a similar way, we can
extend ∇∞ to symmetric and exterior powers of H1∞. This allows us to define a
connection

∇κ∞ :
(
H1∞)κ → A1,0S ⊗C∞S (H1∞)κ,

which we refer to as the twist of ∇∞ by κ. (For a more detailed discussion of this
twisting operation, see [9].)

The following diagram is the basic component of the operator Θ:(
H1,0∞ )κ (

H1∞)κ
A1,0S ⊗

(
H1,0∞ )κ A1,0S ⊗

(
H1∞)κ .

iκ

∇κ∞

id⊗pκ

(5.3)
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5.3 Definition of Θ
We now specialise the constructions of the previous section to our families of
abelian varieties Auniv/Sg and Auniv,N/Sg,N. We denote their Hodge sheaves by

E := π∗Ω
1
Auniv/Sg

and EN := πN∗Ω
1
Auniv,N/Sg,N

,

and we write

E∞ := C∞Sg ⊗OSg
E and EN,∞ := C∞Sg,N ⊗OSg,N

EN

for the smooth versions of these sheaves. If κ = κj,k is a representation of the form
(5.2), then we denote the twists of E∞ and EN,∞ by Eκ∞ and (EN,∞)κ. Note that we
haveω∞ = Edet∞ andωN,∞ = (EN,∞)det in the notation of the previous chapter.

If we consider Diagram (5.3) with respect to the family Auniv/Sg, we see that
the dashed arrow lands in the spaceA1,0Sg⊗Eκ∞. Since our operatorΘ is defined by
iterations, we need to interpret A1,0Sg ⊗ Eκ∞ as Eκ ′∞ for some representation κ ′. Note
that if zij = zji denotes the standard coordinates on Sg, then the sheafΩ1

Sg
is free

on the basis dzij = dzji. On the other hand, if u1, . . . , ug are the usual coordinates
on Cg, then E is free on the basis du1, . . . , dug. The map

KS : Sym2 E→ Ω1
Sg , dui · duj 7→ dzij

is an isomorphism of OSg-modules, known as the Kodaira-Spencer isomorphism.
Extending its inverse to a C∞ isomorphism KS−1 : A1,0Sg ∼= Sym2 E∞, we define a
map ϑj,k : Eκj,k∞ → Eκj+1,k∞ by the diagram

Eκ∞ (
H1∞)κ

A1,0Sg ⊗
(
H1∞)κ

Sym2 E∞ ⊗ Eκ∞ Sym2 E∞ ⊗ (H1∞)κ .

iκ

ϑj,k

∇κ∞

KS−1⊗ id

id⊗pκ

(5.4)

The next step is to show that ϑj,k descends to a map

ϑj,kN : (EN,∞)κ
j,k → (EN,∞)κ

j+1,k

.

Now both Ω1
Sg

and Sym2 E have actions of Γg(N), such that Ω1
Sg,N

∼= Γg(N)\Ω1
Sg

and Sym2 EN ∼= Γg(N)\ Sym2 E. Since KS is equivariant with respect to these ac-
tions (see [11, Section 14]), it descends to an isomorphism KS : Sym2 EN ∼= Ω1

Sg,N
.
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We define ϑj,kN by the diagram analogous to (5.4) for the family Auniv,N/Sg,N:

(EN,∞)κ
(
H1∞)κ

A1,0Sg,N ⊗
(
H1∞)κ

Sym2 EN,∞ ⊗ (EN,∞)κ Sym2 EN,∞ ⊗ (H1∞)κ .

iκ

ϑ
j,k
N

∇κ∞

KS−1⊗ id

id⊗pκ

By construction, ϑj,k is a lift of ϑj,kN .
Let proj : (Sym2 EN,∞)⊗g → ω⊗2N,∞ be the projection induced from Theorem

5.1.5.

Definition 5.3.1. The C∞ theta operator ΘN : ω⊗kN,∞ → ω⊗k+2N,∞ is defined to be the
composition

ΘN := (proj⊗ id) ◦ ϑg−1,kN ◦ · · · ◦ ϑ1,kN ◦ ϑ0,kN .

To compute ΘN, we lift it to a map Θ : ω⊗k∞ → ω⊗k+2∞ , defined by

Θ := (proj⊗ id) ◦ ϑg−1,k ◦ · · · ◦ ϑ1,k ◦ ϑ0,k.

Here proj is the projection of (Sym2 E∞)⊗g ontoω⊗2∞ . The computational problem
is to find a formula for Θ(f du1 ∧ · · · ∧ dug), where f is some smooth C-valued
function on Sg. Consider the ‘untwisted’ theta operator

E∞ H1∞

A1,0Sg ⊗H
1∞

Sym2 E∞ ⊗ E∞ Sym2 E∞ ⊗H1∞;

i

ϑ

∇∞

KS−1⊗ id

id⊗p

this ϑ is the basic operator introduced and calculated by Harris in [13, Section 4.3].
Let z = (zij) be the standard coordinates on Sg. We want to know how ϑ acts on
the basis du1, . . . , dug of E∞. Recall the Equations (3.13):

dul = αl +
∑

1≤ν≤g zlνβν, dūl = αl +
∑

1≤ν≤g z̄lνβν.

Writing these equations in terms of matrices

du = α+ zβ, dū = α+ z̄β

(here du, dū, α and β are column vectors), we see that

du − dū = (z − z̄)β =⇒ β =
1

2i
y−1(du − dū),
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where y = Im z. So the projection of β onto E∞ is 1
2i

y−1du. Now by definition,
∇∞(dul) =

∑
1≤ν≤g dzlνβν, so the formula for ϑ is

ϑ(dul) =
1

2i

∑
1≤ν≤g

duν · dul ⊗ (y−1du)ν, (5.5)

where (y−1du)ν is the νth entry of the column vector y−1du.

5.4 Computation of Θ for g = 2

In this section, we compute Θ = (proj⊗ id) ◦ ϑ1,k ◦ ϑ0,k. We proceed in stages:
first we compute ϑ0,k, then (proj⊗ id) ◦ ϑ1,k. Note that when g = 2, Equation (5.5)
becomes

ϑ(dul) =
1

2idet y
(
y22 du1 · dul ⊗ du1 − y12 du1 · dul ⊗ du2

− y12 du2 · dul ⊗ du1 + y11 du2 · dul ⊗ du2
)
. (5.6)

Lemma 5.4.1. If f : S2 → C is a smooth function, then

ϑ0,k
(
f (du1∧du2)

⊗k) = [( ∂f

∂z11
+
k

2i

y22

det y
f

)
du1·du1+

(
∂f

∂z12
−
k

i

y12

det y
f

)
du1·du2

+

(
∂f

∂z22
+
k

2i

y11

det y
f

)
du2 · du2

]
(du1 ∧ du2)

⊗k.

Proof. Note that

ϑ0,k
(
f (du1 ∧ du2)

⊗k) = ∂f⊗ (du1 ∧ du2)
⊗k

+ kf ϑ0,1(du1 ∧ du2)⊗ (du1 ∧ du2)
⊗(k−1),

where ∂f = ∂f
∂z11
du1 ·du1+ ∂f

∂z12
du1 ·du2+ ∂f

∂z22
du2 ·du2. Then use (5.6) to compute

that

ϑ0,1(du1 ∧ du2) =
1

2idet y
(
y22 du1 · du1 − 2y12 du1 · du2 + y11 du2 · du2

)
⊗ du1 ∧ du2.

We now look at ϑ1,k. Suppose F,G,H : S2 → C are smooth functions. By
definition of ϑ1,k, we have

ϑ1,k
(
(F du1 · du1 +Gdu1 · du2 +Hdu2 · du2)(du1 ∧ du2)⊗k

)
=[

∂F⊗ du1 · du1 + ∂G⊗ du1 · du2 + ∂H⊗ du2 · du2
]
(du1 ∧ du2)

⊗k

+
[
F ϑ1,0(du1 · du1) +Gϑ1,0(du1 · du2) +Hϑ1,0(du2 · du2)

]
(du1 ∧ du2)

⊗k

+
[
F du1 · du1 +Gdu1 · du2 +Hdu2 · du2

]
ϑ0,k
(
(du1 ∧ du2)

⊗k). (5.7)

Instead of expanding everything out to obtain a formula for ϑ1,k, we will apply
proj⊗ id to (5.7) directly. First note the following:
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Lemma 5.4.2. Suppose dui1 · dui2 ⊗ duj1 · duj2 ∈ ESym2(Sg). Assuming without loss
of generality that i1 ≤ i2 and j1 ≤ j2, we have

proj(dui1 · dui2 ⊗ duj1 · duj2) =


4 (du1 ∧ du2)

⊗2 i1 = i2 = 1 and j1 = j2 = 2
4 (du1 ∧ du2)

⊗2 i2 = i2 = 2 and j1 = j2 = 1
−2 (du1 ∧ du2)

⊗2 i1 = j1 = 1 and i2 = j2 = 2
0 otherwise.

Proof. Immediate from the definition of proj.
Lemma 5.4.3. If we apply proj to the coefficient of the first (du1 ∧ du2)⊗k on the RHS
of (5.7), we get

proj(∂F⊗ du1 · du1 + ∂G⊗ du1 · du2 + ∂H⊗ du2 · du2) =(
4
∂H

∂z11
− 2

∂G

∂z12
+ 4

∂F

∂z22

)
(du1 ∧ du2)

⊗2.

Proof. Note that

∂F =
∂F

∂z11
du1 · du1 +

∂F

∂z12
du1 · du2 +

∂F

∂z22
du2 · du2,

and similarly for ∂G and ∂H. Then apply the previous lemma.
Lemma 5.4.4. If we apply proj to the coefficient of the second (du1∧du2)

⊗k on the RHS
of (5.7), we get

proj(F ϑ1,0(du1 · du1) +Gϑ1,0(du1 · du2) +Hϑ1,0(du2 · du2)) =

+
2i

det y
(y11F+ y12G+ y22H) (du1 ∧ du2)

⊗2.

Proof. Using (5.6), we find that

ϑ1,0(du1 · du1) = 2 ϑ(du1) · du1

=
1

idet y
(
y22 du1 · du1 ⊗ du1 · du1 − y12 du1 · du1 ⊗ du1 · du2

− y12 du1 · du2 ⊗ du1 · du1 + y11 du1 · du2 ⊗ du1 · du2
)
,

and

ϑ1,0(du2 · du2) = 2 ϑ(du2) · du2

=
1

idet y
(
y22 du1 · du2 ⊗ du1 · du2 − y12 du1 · du2 ⊗ du2 · du2

− y12 du2 · du2 ⊗ du1 · du2 + y11 du2 · du2 ⊗ du2 · du2
)
,

and

ϑ1,0(du1 · du2) = ϑ(du1) · du2 + du1 · ϑ(du2)

=
1

2idet y
(
y22 du1 · du1 ⊗ du1 · du2 − y12 du1 · du1 ⊗ du2 · du2

− y12 du1 · du2 ⊗ du1 · du2 + y11 du1 · du2 ⊗ du2 · du2
+ y22 du1 · du2 ⊗ du1 · du1 − y12 du1 · du2 ⊗ du1 · du2
− y12 du2 · du2 ⊗ du1 · du1 + y11 du2 · du2 ⊗ du1 · du2

)
.
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Hence, we have

proj(ϑ1,0(du1 · du1)) = −2 · 1
i

y11

det y
= 2i

y11

det y

proj(ϑ1,0(du1 · du2)) = (−4+ 2+ 2− 4) · 1
2i

y12

det y
= 2i

y12

det y

proj(ϑ1,0(du2 · du2)) = −2 · 1
i

y22

det y
= 2i

y22

det y
.

Lemma 5.4.5. If we apply proj⊗ id to the third term on the RHS of (5.7), we get

proj⊗ id
([
F du1 · du1 +Gdu1 · du2 +Hdu2 · du2

]
ϑ0,k
(
(du1 ∧ du2)

⊗k)) =

−
2ki

det y
(y11F+ y12G+ y22H) (du1 ∧ du2)

⊗(k+2).

Proof. Just take f = 1 in Lemma 5.4.1, and project.

Combining the previous three lemmas, we get:

Lemma 5.4.6. A formula for (proj⊗ id) ◦ ϑ1,k is given by

(proj⊗ id) ◦ ϑ1,k
(
(F du1 · du1 +Gdu1 · du2 +Hdu2 · du2)(du1 ∧ du2)⊗k

)
=(

4
∂H

∂z11
− 2

∂G

∂z12
+ 4

∂F

∂z22
−
2(k− 1)i

det y
(y11F+ y12G+ y22H)

)
(du1 ∧ du2)

⊗(k+2). (5.8)

Finally, to compute Θ(f (du1 ∧ du2)⊗k), we substitute

F =
∂f

∂z11
+
k

2i

y22

det y
f, G =

∂f

∂z12
−
k

i

y12

det y
f, H =

∂f

∂z22
+
k

2i

y11

det y
f.

into Equation (5.8).

Lemma 5.4.7. With these values of F, G and H, we have

4
∂H

∂z11
− 2

∂G

∂z12
+ 4

∂F

∂z22
= 8

∂2f

∂z11∂z22
− 2

∂2f

∂z12∂z12

−
2ki

det y

(
y11

∂f

∂z11
+ y12

∂f

∂z12
+ y22

∂f

∂z22

)
−

k

det y
f.

Proof. By the product rule,

4
∂H

∂z11
− 2

∂G

∂z12
+ 4

∂F

∂z22
= 4

∂2f

∂z11∂z22
− 2

∂2f

∂z212
+ 4

∂2f

∂z22∂z11

−
2ki

det y

(
y11

∂f

∂z11
+ y12

∂f

∂z12
+ y22

∂f

∂z22

)
− 2ki

(
∂

∂z11

y11

det y
+

∂

∂z12

y12

det y
+

∂

∂z22

y22

det y

)
f.
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To simplify the last term, recall that

∂

∂zij
=
1

2

(
∂

∂xij
− i

∂

∂yij

)
,

so

− 2ki

(
∂

∂z11

y11

det y
+

∂

∂z12

y12

det y
+

∂

∂z22

y22

det y

)
=

− k

(
∂

∂y11

y11

det y
+

∂

∂y12

y12

det y
+

∂

∂y22

y22

det y

)
.

Using the quotient rule, one computes easily that

−k

(
∂

∂y11

y11

det y
+

∂

∂y12

y12

det y
+

∂

∂y22

y22

det y

)
=

−k

det y
.

Theorem 5.4.8. For g = 2, the theta operator ΘN : ω⊗kN,∞ → ω
⊗(k+2)
N,∞ is given by the

formula

Θ(f (du1∧du2)
⊗k) =

[
8

∂2f

∂z11∂z22
−2

∂2f

∂z212
−
2(2k− 1)i

det y

(
y11

∂f

∂z11
+ y12

∂f

∂z12
+ y22

∂f

∂z22

)
−
k(2k− 1)

det y
f

]
(du1 ∧ du2)

⊗(k+2).

Proof. With F, G and H as above, it’s easy to see that

y11F+ y12G+ y22H = y11
∂f

∂z11
+ y12

∂f

∂z12
+ y22

∂f

∂z22
− ki f.

Combining this with the previous lemma and Lemma 5.4.6 establishes the result.

This is the formula for Maass’ operator δ2; see [21, Section 19].
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Index of notation

Here is a table of the most important notation occurring in this thesis, roughly or-
ganised by chapter. In this table, X denotes a complex manifold, and X/S denotes
a family of complex manifolds.

Chapter 2
π1(X, x) the fundamental group of X at a point x ∈ X
Hk(X;C) the kth singular cohomology group with coefficients in C
Hk(X,F) the kth cohomology group with coefficients in an abelian sheaf F
Hk(X/S) the kth relative cohomology sheaf of X/S

Chapter 3
OX the sheaf of holomorphic functions on X
C∞X the sheaf of smooth complex-valued functions on X
TX,R the tangent bundle of X, considered as a smooth manifold
TX,C the complexified tangent bundle of X
TX the holomorphic tangent bundle of X
T∨X,C the complexified cotangent bundle of X
T∨X the holomorphic cotangent bundle of X
AkX the sheaf of smooth complex-valued k-forms on X
Ap,qX the subsheaf of Ap+qX consisting of forms of type (p, q)
Ωp
X the sheaf of holomorphic p-forms on X

Ak(X) Γ(X,AkX)
d the exterior derivative of the de Rham complex
∂, ∂̄ the holomorphic and anti-holomorphic components of d
HkdR(X) the kth de Rham cohomology group of X (with complex coefficients)
TX/S,R the relative tangent bundle of X/S, considered as a smooth family
TX/S,C the complexified relative tangent bundle of X/S
TX/S the holomorphic relative tangent bundle of X/S
T∨X/S,C the complexified relative cotangent bundle of X/S
T∨X/S the holomorphic relative cotangent bundle of X/S
AkX/S the sheaf of C∞ complex-valued relative k-forms on X/S
Ap,qX/S the subsheaf of Ap+qX/S consisting of forms of type (p, q)

(A·X/S, dX/S) the smooth relative de Rham complex
Ωp
X/S the sheaf of holomorphic relative p-forms on X/S

(Ω·X/S, ∂X/S) the holomorphic relative de Rham complex
HkdR(X/S) the kth relative de Rham cohomology sheaf of X/S
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H1,0,H0,1 holomorphic and anti-holomorphic summands ofH1dR(X/S)

ι the de Rham isomorphism H1dR(X)
∼−→ H1(X;C)

Chapter 4
Sp

2g
(R) the real symplectic group

Sp
2g
(Z) the Siegel modular group

Γg(N) the level N principal congruence subgroup of Sp
2g
(Z)

Sg the Siegel upper half space
Sg,N the Siegel modular variety of level N
Auniv a universal family of abelian varieties over Sg

Auniv,N a universal family of abelian varieties over Sg,N

ε the zero section of π : Auniv → Sg

εN the zero section of πN : Auniv,N → Sg,N

ω the determinant of π∗Ω1
Auniv/Sg

ωN the determinant of πN∗Ω1
Auniv,N/Sg,N

ω∞ C∞Sg ⊗OSg
ω

ωN,∞ C∞Sg,N ⊗OSg,N
ωN

Chapter 5
std the standard representation of GLg(C) on Cg
Sym2 the symmetric square of the standard representation
det the determinant representation of GLg(C) on Cg
sgn the sign of a permutation
∇ the Gauss-Manin connection
∇∞ the C∞ Gauss-Manin connection
κj,k the representation (Sym2 std)⊗j ⊗ (det std)⊗k
H1∞(X/S) = H1∞ either C∞S ⊗OS H1(X/S) or C∞S ⊗OS H1dR(X/S)
H1,0∞ C∞S ⊗OS H1,0
(H1∞)κ, (H1,0∞ )κ twists ofH1∞,H1,0∞ by κ = κj,k

∇κ∞ the C∞ Gauss-Manin connection twisted by κ = κj,k

E the Hodge sheaf π∗Ω1
Auniv/Sg

EN the Hodge sheaf πN∗Ω1
Auniv,N/Sg,N

E∞ C∞Sg ⊗OSg
E

EN,∞ C∞Sg,N ⊗OSg,N
EN

Eκ∞, (EN,∞)κ twists of E∞, EN,∞ by κ = κj,k

KS the Kodaira-Spencer isomorphism
ΘN the C∞ theta operatorω⊗kN,∞ → ω

⊗(k+2)
N,∞

Θ the canonical lift of ΘN toω⊗k∞
ϑj,kN the jth component of ΘN
ϑj,k the jth component of Θ
ϑ the untwisted theta operator E∞ → Sym2 E∞ ⊗ E∞
proj the projection (Sym2 EN,∞)⊗g → ω⊗2N,∞, or its lift to (Sym2 E∞)⊗g
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suites spectrales”. In: Publications mathématiques de l’I.H.È.S. 35 (1968), pp. 107–
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